Cargando…

Automatic segmentation of brain MRI using a novel patch-wise U-net deep architecture

Accurate segmentation of brain magnetic resonance imaging (MRI) is an essential step in quantifying the changes in brain structure. Deep learning in recent years has been extensively used for brain image segmentation with highly promising performance. In particular, the U-net architecture has been w...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Bumshik, Yamanakkanavar, Nagaraj, Choi, Jae Young
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7398543/
https://www.ncbi.nlm.nih.gov/pubmed/32745102
http://dx.doi.org/10.1371/journal.pone.0236493
Descripción
Sumario:Accurate segmentation of brain magnetic resonance imaging (MRI) is an essential step in quantifying the changes in brain structure. Deep learning in recent years has been extensively used for brain image segmentation with highly promising performance. In particular, the U-net architecture has been widely used for segmentation in various biomedical related fields. In this paper, we propose a patch-wise U-net architecture for the automatic segmentation of brain structures in structural MRI. In the proposed brain segmentation method, the non-overlapping patch-wise U-net is used to overcome the drawbacks of conventional U-net with more retention of local information. In our proposed method, the slices from an MRI scan are divided into non-overlapping patches that are fed into the U-net model along with their corresponding patches of ground truth so as to train the network. The experimental results show that the proposed patch-wise U-net model achieves a Dice similarity coefficient (DSC) score of 0.93 in average and outperforms the conventional U-net and the SegNet-based methods by 3% and 10%, respectively, for on Open Access Series of Imaging Studies (OASIS) and Internet Brain Segmentation Repository (IBSR) dataset.