Cargando…
Automatic segmentation of brain MRI using a novel patch-wise U-net deep architecture
Accurate segmentation of brain magnetic resonance imaging (MRI) is an essential step in quantifying the changes in brain structure. Deep learning in recent years has been extensively used for brain image segmentation with highly promising performance. In particular, the U-net architecture has been w...
Autores principales: | Lee, Bumshik, Yamanakkanavar, Nagaraj, Choi, Jae Young |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7398543/ https://www.ncbi.nlm.nih.gov/pubmed/32745102 http://dx.doi.org/10.1371/journal.pone.0236493 |
Ejemplares similares
-
Correction: Automatic segmentation of brain MRI using a novel patch-wise U-net deep architecture
por: Lee, Bumshik, et al.
Publicado: (2022) -
SM-SegNet: A Lightweight Squeeze M-SegNet for Tissue Segmentation in Brain MRI Scans
por: Yamanakkanavar, Nagaraj, et al.
Publicado: (2022) -
Correction: Automatic segmentation of brain MRI using a novel patch-wise U-net deep architecture
Publicado: (2021) -
MRI Segmentation and Classification of Human Brain Using Deep Learning for Diagnosis of Alzheimer’s Disease: A Survey
por: Yamanakkanavar, Nagaraj, et al.
Publicado: (2020) -
Multiscale and Hierarchical Feature-Aggregation Network for Segmenting Medical Images
por: Yamanakkanavar, Nagaraj, et al.
Publicado: (2022)