Cargando…
Dioxygen Activation by Internally Aromatic Metallacycle: Crystallographic Structure and Mechanistic Investigations
Mononuclear metal-peroxo species are invoked as the key intermediates in metalloenzymatic or synthetic catalysis. However, either transience or sluggishness reactivity of synthetic analogs of metal-peroxo species impedes our understanding of oxygen activation mechanism. Herein, we designed and chara...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7399181/ https://www.ncbi.nlm.nih.gov/pubmed/32739835 http://dx.doi.org/10.1016/j.isci.2020.101379 |
Sumario: | Mononuclear metal-peroxo species are invoked as the key intermediates in metalloenzymatic or synthetic catalysis. However, either transience or sluggishness reactivity of synthetic analogs of metal-peroxo species impedes our understanding of oxygen activation mechanism. Herein, we designed and characterized a dioxygen-derived mononuclear osmium-peroxo complex, in which the peroxo ligand is stabilized by internally aromatic metallacycle. We demonstrate that the osmium-peroxo species shows catalytic activity toward promoterless alcohol dehydrogenations. Furthermore, computational studies provide a new mechanism for the osmium-peroxo-mediated alcohol oxidation, starting with the concerted double-hydrogen transfer and followed by the generation of osmium-oxo species. Interestingly, the internally aromatic metallacycle also plays a vital role in catalysis, which mediates the hydrogen transfer from osmium center to the distal oxygen atom of Os–OOH moiety, thus facilitating the Os–OOH→Os=O conversion. We expect that these insights will advance the development of aromatic metallacycle toward aerobic oxidation catalysis. |
---|