Cargando…

Controlling ice formation on gradient wettability surface for high-performance bioinspired materials

Ice-templating holds promise to become a powerful technique to construct high-performance bioinspired materials. Both ice nucleation and growth during the freezing process are crucial for the final architecture of the ice-templated material. However, effective ways to control these two very importan...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Nifang, Li, Meng, Gong, Huaxin, Bai, Hao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7399483/
https://www.ncbi.nlm.nih.gov/pubmed/32789180
http://dx.doi.org/10.1126/sciadv.abb4712
Descripción
Sumario:Ice-templating holds promise to become a powerful technique to construct high-performance bioinspired materials. Both ice nucleation and growth during the freezing process are crucial for the final architecture of the ice-templated material. However, effective ways to control these two very important factors are still lacking. Here, we demonstrate that successive ice nucleation and preferential growth can be realized by introducing a wettability gradient on a cold finger. A bulk porous material with a long-range lamellar pattern was obtained using a linear gradient, yielding a high-performance, bulk nacre-mimetic composite with excellent strength and toughness after infiltration. In addition, cross-aligned and circular lamellar structures can be obtained by freeze-casting on surfaces modified with bilayer linear gradient and radial gradient, respectively, which are impossible to realize with conventional freeze-casting techniques. Our study highlights the potential of harnessing the rich designability of surface wettability patterns to build high-performance bulk materials with bioinspired complex architectures.