Cargando…
Sphingomyelins and ent-Sphingomyelins Form Homophilic Nano-Subdomains within Liquid Ordered Domains
Sphingomyelin (SM), a major component of small domains (or lipid rafts) in mammalian cell membranes, forms a liquid-ordered phase in the presence of cholesterol (Cho). However, the nature of molecular interactions within the ordered SM/Cho phase remains elusive. We previously revealed that stearoyl-...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Biophysical Society
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7399500/ https://www.ncbi.nlm.nih.gov/pubmed/32710823 http://dx.doi.org/10.1016/j.bpj.2020.06.028 |
Sumario: | Sphingomyelin (SM), a major component of small domains (or lipid rafts) in mammalian cell membranes, forms a liquid-ordered phase in the presence of cholesterol (Cho). However, the nature of molecular interactions within the ordered SM/Cho phase remains elusive. We previously revealed that stearoyl-SM (SSM) and its enantiomer (ent-SSM) separately form nano-subdomains within the liquid-ordered phase involving homophilic SSM-SSM and ent-SSM-ent-SSM interactions. In this study, the details of the subdomain formation by SSMs at the nanometer range were examined using Förster resonance energy transfer (FRET) measurements in lipid bilayers containing SSM and ent-SSM, dioleoyl-phosphatidylcholine and Cho. Although microscopy detected a stereochemical effect on partition coefficient favoring stereochemically homophilic interactions in the liquid-ordered state, it showed no significant difference in large-scale liquid-ordered domain formation by the two stereoisomers. In contrast to the uniform domains seen microscopy, FRET analysis using fluorescent donor- and acceptor-labeled SSM showed distinct differences in SM and ent-SM colocalization within nanoscale distances. Donor- and acceptor-labeled SSM showed significantly higher FRET efficiency than did donor-labeled SSM and acceptor-labeled ent-SSM in lipid vesicles composed of “racemic” (1:1) mixtures of SSM/ent-SSM with dioleoylphosphatidylcholine and Cho. The difference in FRET efficiency indicated that SSM and ent-SSM assemble to form separate nano-subdomains. The average size of the subdomains decreased as temperature increased, and at physiological temperatures, the subdomains were found to have a single-digit nanometer radius. These results suggest that (even in the absence of ent-SM) SM-SM interactions play a crucial role in forming nano-subdomains within liquid-ordered domains and may be a key feature of lipid microdomains (or rafts) in biological membranes. |
---|