Cargando…
Prediction Model for Dry Eye Syndrome Incidence Rate Using Air Pollutants and Meteorological Factors in South Korea: Analysis of Sub-Region Deviations
Here, we develop a dry eye syndrome (DES) incidence rate prediction model using air pollutants (PM(10), NO(2), SO(2), O(3), and CO), meteorological factors (temperature, humidity, and wind speed), population rate, and clinical data for South Korea. The prediction model is well fitted to the incidenc...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7399894/ https://www.ncbi.nlm.nih.gov/pubmed/32664192 http://dx.doi.org/10.3390/ijerph17144969 |
_version_ | 1783566237789323264 |
---|---|
author | Youn, Jong-Sang Seo, Jeong-Won Park, Wonjun Park, SeJoon Jeon, Ki-Joon |
author_facet | Youn, Jong-Sang Seo, Jeong-Won Park, Wonjun Park, SeJoon Jeon, Ki-Joon |
author_sort | Youn, Jong-Sang |
collection | PubMed |
description | Here, we develop a dry eye syndrome (DES) incidence rate prediction model using air pollutants (PM(10), NO(2), SO(2), O(3), and CO), meteorological factors (temperature, humidity, and wind speed), population rate, and clinical data for South Korea. The prediction model is well fitted to the incidence rate (R(2) = 0.9443 and 0.9388, p < 2.2 × 10(−16)). To analyze regional deviations, we classify outpatient data, air pollutant, and meteorological factors in 16 administrative districts (seven metropolitan areas and nine states). Our results confirm NO(2) and relative humidity are the factors impacting regional deviations in the prediction model. |
format | Online Article Text |
id | pubmed-7399894 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-73998942020-08-17 Prediction Model for Dry Eye Syndrome Incidence Rate Using Air Pollutants and Meteorological Factors in South Korea: Analysis of Sub-Region Deviations Youn, Jong-Sang Seo, Jeong-Won Park, Wonjun Park, SeJoon Jeon, Ki-Joon Int J Environ Res Public Health Article Here, we develop a dry eye syndrome (DES) incidence rate prediction model using air pollutants (PM(10), NO(2), SO(2), O(3), and CO), meteorological factors (temperature, humidity, and wind speed), population rate, and clinical data for South Korea. The prediction model is well fitted to the incidence rate (R(2) = 0.9443 and 0.9388, p < 2.2 × 10(−16)). To analyze regional deviations, we classify outpatient data, air pollutant, and meteorological factors in 16 administrative districts (seven metropolitan areas and nine states). Our results confirm NO(2) and relative humidity are the factors impacting regional deviations in the prediction model. MDPI 2020-07-10 2020-07 /pmc/articles/PMC7399894/ /pubmed/32664192 http://dx.doi.org/10.3390/ijerph17144969 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Youn, Jong-Sang Seo, Jeong-Won Park, Wonjun Park, SeJoon Jeon, Ki-Joon Prediction Model for Dry Eye Syndrome Incidence Rate Using Air Pollutants and Meteorological Factors in South Korea: Analysis of Sub-Region Deviations |
title | Prediction Model for Dry Eye Syndrome Incidence Rate Using Air Pollutants and Meteorological Factors in South Korea: Analysis of Sub-Region Deviations |
title_full | Prediction Model for Dry Eye Syndrome Incidence Rate Using Air Pollutants and Meteorological Factors in South Korea: Analysis of Sub-Region Deviations |
title_fullStr | Prediction Model for Dry Eye Syndrome Incidence Rate Using Air Pollutants and Meteorological Factors in South Korea: Analysis of Sub-Region Deviations |
title_full_unstemmed | Prediction Model for Dry Eye Syndrome Incidence Rate Using Air Pollutants and Meteorological Factors in South Korea: Analysis of Sub-Region Deviations |
title_short | Prediction Model for Dry Eye Syndrome Incidence Rate Using Air Pollutants and Meteorological Factors in South Korea: Analysis of Sub-Region Deviations |
title_sort | prediction model for dry eye syndrome incidence rate using air pollutants and meteorological factors in south korea: analysis of sub-region deviations |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7399894/ https://www.ncbi.nlm.nih.gov/pubmed/32664192 http://dx.doi.org/10.3390/ijerph17144969 |
work_keys_str_mv | AT younjongsang predictionmodelfordryeyesyndromeincidencerateusingairpollutantsandmeteorologicalfactorsinsouthkoreaanalysisofsubregiondeviations AT seojeongwon predictionmodelfordryeyesyndromeincidencerateusingairpollutantsandmeteorologicalfactorsinsouthkoreaanalysisofsubregiondeviations AT parkwonjun predictionmodelfordryeyesyndromeincidencerateusingairpollutantsandmeteorologicalfactorsinsouthkoreaanalysisofsubregiondeviations AT parksejoon predictionmodelfordryeyesyndromeincidencerateusingairpollutantsandmeteorologicalfactorsinsouthkoreaanalysisofsubregiondeviations AT jeonkijoon predictionmodelfordryeyesyndromeincidencerateusingairpollutantsandmeteorologicalfactorsinsouthkoreaanalysisofsubregiondeviations |