Cargando…
Efficient Anomaly Detection with Generative Adversarial Network for Breast Ultrasound Imaging
We aimed to use generative adversarial network (GAN)-based anomaly detection to diagnose images of normal tissue, benign masses, or malignant masses on breast ultrasound. We retrospectively collected 531 normal breast ultrasound images from 69 patients. Data augmentation was performed and 6372 (531...
Autores principales: | Fujioka, Tomoyuki, Kubota, Kazunori, Mori, Mio, Kikuchi, Yuka, Katsuta, Leona, Kimura, Mizuki, Yamaga, Emi, Adachi, Mio, Oda, Goshi, Nakagawa, Tsuyoshi, Kitazume, Yoshio, Tateishi, Ukihide |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7400007/ https://www.ncbi.nlm.nih.gov/pubmed/32635547 http://dx.doi.org/10.3390/diagnostics10070456 |
Ejemplares similares
-
Breast Ultrasound Image Synthesis using Deep Convolutional Generative Adversarial Networks
por: Fujioka, Tomoyuki, et al.
Publicado: (2019) -
The Utility of Deep Learning in Breast Ultrasonic Imaging: A Review
por: Fujioka, Tomoyuki, et al.
Publicado: (2020) -
Investigating the Image Quality and Utility of Synthetic MRI in the
Breast
por: Fujioka, Tomoyuki, et al.
Publicado: (2021) -
Feasibility of ultrafast dynamic magnetic resonance imaging for the diagnosis of axillary lymph node metastasis: A case report
por: Kikuchi, Yuka, et al.
Publicado: (2020) -
Relationship between Prognostic Stage in Breast Cancer and Fluorine-18 Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography
por: Mori, Mio, et al.
Publicado: (2021)