Cargando…
Reliability of Supervised Machine Learning Using Synthetic Data in Health Care: Model to Preserve Privacy for Data Sharing
BACKGROUND: The exploitation of synthetic data in health care is at an early stage. Synthetic data could unlock the potential within health care datasets that are too sensitive for release. Several synthetic data generators have been developed to date; however, studies evaluating their efficacy and...
Autores principales: | Rankin, Debbie, Black, Michaela, Bond, Raymond, Wallace, Jonathan, Mulvenna, Maurice, Epelde, Gorka |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7400044/ https://www.ncbi.nlm.nih.gov/pubmed/32501278 http://dx.doi.org/10.2196/18910 |
Ejemplares similares
-
Synthetic Tabular Data Evaluation in the Health Domain Covering Resemblance, Utility, and Privacy Dimensions
por: Hernadez, Mikel, et al.
Publicado: (2023) -
Privacy-preserving data sharing via probabilistic modeling
por: Jälkö, Joonas, et al.
Publicado: (2021) -
DPSynthesizer: Differentially Private Data Synthesizer for Privacy Preserving Data Sharing
por: Li, Haoran, et al.
Publicado: (2014) -
Privacy preserving data sharing method for social media platforms
por: Yadav, Snehlata, et al.
Publicado: (2023) -
Discovering and comparing types of general practitioner practices using geolocational features and prescribing behaviours by means of K-means clustering
por: Booth, Frederick G., et al.
Publicado: (2021)