Cargando…
Pollution Assessment Based on Element Concentration of Tree Leaves and Topsoil in Ayutthaya Province, Thailand
Atmospheric aerosol particles containing heavy metal contaminants deposit on the surface of plant leaves and the topsoil. Our aim was to reveal the pollution along an industrial–urban–rural gradient (IURG) in the central provinces of Thailand. Leaf samples from Ficus religiosa and Mimusops elengi we...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7400151/ https://www.ncbi.nlm.nih.gov/pubmed/32708947 http://dx.doi.org/10.3390/ijerph17145165 |
Sumario: | Atmospheric aerosol particles containing heavy metal contaminants deposit on the surface of plant leaves and the topsoil. Our aim was to reveal the pollution along an industrial–urban–rural gradient (IURG) in the central provinces of Thailand. Leaf samples from Ficus religiosa and Mimusops elengi were collected along with topsoil samples under the selected trees. Al, Ba, Ca, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, and Zn concentrations were determined by ICP-OES in soil and plant samples. Soils were not polluted according to the critical value; furthermore, the elemental composition did not differ among the sampling sites of the IURG. The rural site was also polluted due to heavy amounts of untreated wastewater of the adjacent Chao Phraya River. Bioaccumulation factors of Ba, Cu, and Mn was higher than 1, suggesting active accumulation of these elements in plant tissue. Our findings proved that the deposition of air pollutants and the resistance to air pollutants in the case of plant leaves were different and that humus materials of the soils had relevant role in bioaccumulation of Al, Ba, and Cu. At the same time, the geochemical background, the source of pollution, and the local plant species greatly influence the metal content of any given environmental compartment. |
---|