Cargando…
Landslide Susceptibility Mapping Using Machine Learning Algorithms and Remote Sensing Data in a Tropical Environment
We used AdaBoost (AB), alternating decision tree (ADTree), and their combination as an ensemble model (AB-ADTree) to spatially predict landslides in the Cameron Highlands, Malaysia. The models were trained with a database of 152 landslides compiled using Synthetic Aperture Radar Interferometry, Goog...
Autores principales: | Nhu, Viet-Ha, Mohammadi, Ayub, Shahabi, Himan, Ahmad, Baharin Bin, Al-Ansari, Nadhir, Shirzadi, Ataollah, Clague, John J., Jaafari, Abolfazl, Chen, Wei, Nguyen, Hoang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7400293/ https://www.ncbi.nlm.nih.gov/pubmed/32650595 http://dx.doi.org/10.3390/ijerph17144933 |
Ejemplares similares
-
A Robust Deep-Learning Model for Landslide Susceptibility Mapping: A Case Study of Kurdistan Province, Iran
por: Ghasemian, Bahareh, et al.
Publicado: (2022) -
Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms
por: Nhu, Viet-Ha, et al.
Publicado: (2020) -
Monitoring and Assessment of Water Level Fluctuations of the Lake Urmia and Its Environmental Consequences Using Multitemporal Landsat 7 ETM(+) Images
por: Nhu, Viet-Ha, et al.
Publicado: (2020) -
Landslide susceptibility mapping using GIS-based statistical models and Remote sensing data in tropical environment
por: Shahabi, Himan, et al.
Publicado: (2015) -
Novel GIS Based Machine Learning Algorithms for Shallow Landslide Susceptibility Mapping
por: Shirzadi, Ataollah, et al.
Publicado: (2018)