Cargando…

Evaluation of the Suitability of an Existing Job–Exposure Matrix for the Assessment of Exposure of UK Biobank Participants to Dust, Fumes, and Diesel Exhaust Particulates

Many epidemiological studies have shown an association between outdoor particulate air pollutants and increased morbidity and mortality. Inhalation of ambient aerosols can exacerbate or promote the development of cardiovascular and pulmonary diseases as well as other diseases, such as type 2 diabete...

Descripción completa

Detalles Bibliográficos
Autores principales: Dimakakou, Eirini, Johnston, Helinor J., Streftaris, George, Cherrie, John W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7400423/
https://www.ncbi.nlm.nih.gov/pubmed/32650426
http://dx.doi.org/10.3390/ijerph17144919
Descripción
Sumario:Many epidemiological studies have shown an association between outdoor particulate air pollutants and increased morbidity and mortality. Inhalation of ambient aerosols can exacerbate or promote the development of cardiovascular and pulmonary diseases as well as other diseases, such as type 2 diabetes mellitus (T2DM) and neurodegenerative diseases. Occupational exposure to dust, fumes and diesel exhaust particulates can also cause adverse health outcomes and there are numerous occupations where workers are exposed to airborne particles that are similar to ambient air pollution. An individual’s job title has normally been identified as a major determinant of workplace exposure in epidemiological studies. This has led to the development of Job–Exposure Matrices (JEMs) as a way of characterising specific workplace exposures. One JEM for airborne chemical exposures is the Airborne Chemical Exposure Job–Exposure Matrix (ACE JEM), developed specifically for the UK Biobank cohort. The objective of this paper is to evaluate the suitability of the ACE JEM in assessing occupational aerosol exposure of participants in the UK Biobank. We searched the scientific literature to identify exposure data linked to selected jobs in the ACE JEM and compared these data with the JEM assessments. Additionally, we carried out an independent expert-based assessment of exposure to compare with the JEM estimates. There is good published evidence to substantiate the high dust and biological dust assignments in the JEM and more limited evidence for diesel exhaust particulates. There is limited evidence in the published literature to substantiate moderate or low exposure assignments in the JEM. The independent expert-based assessment found good agreement at the two extremes of exposure in the JEM (high and no exposure), with uncertainty in all other classifications. The ACE JEM assignments are probably reliable for highly exposed jobs and for jobs assigned as unexposed. However, the assignments for medium and low exposures are less reliable. The ACE JEM is likely to be a good tool to examine associations between occupational exposures to particulates and chronic disease, although it should be used with caution. Further efforts should be made to improve the reliability of the ACE JEM.