Cargando…
A deep learning model to predict RNA-Seq expression of tumours from whole slide images
Deep learning methods for digital pathology analysis are an effective way to address multiple clinical questions, from diagnosis to prediction of treatment outcomes. These methods have also been used to predict gene mutations from pathology images, but no comprehensive evaluation of their potential...
Autores principales: | Schmauch, Benoît, Romagnoni, Alberto, Pronier, Elodie, Saillard, Charlie, Maillé, Pascale, Calderaro, Julien, Kamoun, Aurélie, Sefta, Meriem, Toldo, Sylvain, Zaslavskiy, Mikhail, Clozel, Thomas, Moarii, Matahi, Courtiol, Pierre, Wainrib, Gilles |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7400514/ https://www.ncbi.nlm.nih.gov/pubmed/32747659 http://dx.doi.org/10.1038/s41467-020-17678-4 |
Ejemplares similares
-
Validation of MSIntuit as an AI-based pre-screening tool for MSI detection from colorectal cancer histology slides
por: Saillard, Charlie, et al.
Publicado: (2023) -
Integrative DNA methylation and gene expression analysis to assess the universality of the CpG island methylator phenotype
por: Moarii, Matahi, et al.
Publicado: (2015) -
Pacpaint: a histology-based deep learning model uncovers the extensive intratumor molecular heterogeneity of pancreatic adenocarcinoma
por: Saillard, Charlie, et al.
Publicado: (2023) -
Changes in correlation between promoter methylation and gene expression in cancer
por: Moarii, Matahi, et al.
Publicado: (2015) -
Comparative performances of machine learning methods for classifying Crohn Disease patients using genome-wide genotyping data
por: Romagnoni, Alberto, et al.
Publicado: (2019)