Cargando…
Automatic Identification of Down Syndrome Using Facial Images with Deep Convolutional Neural Network
Down syndrome is one of the most common genetic disorders. The distinctive facial features of Down syndrome provide an opportunity for automatic identification. Recent studies showed that facial recognition technologies have the capability to identify genetic disorders. However, there is a paucity o...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7400586/ https://www.ncbi.nlm.nih.gov/pubmed/32709157 http://dx.doi.org/10.3390/diagnostics10070487 |
Sumario: | Down syndrome is one of the most common genetic disorders. The distinctive facial features of Down syndrome provide an opportunity for automatic identification. Recent studies showed that facial recognition technologies have the capability to identify genetic disorders. However, there is a paucity of studies on the automatic identification of Down syndrome with facial recognition technologies, especially using deep convolutional neural networks. Here, we developed a Down syndrome identification method utilizing facial images and deep convolutional neural networks, which quantified the binary classification problem of distinguishing subjects with Down syndrome from healthy subjects based on unconstrained two-dimensional images. The network was trained in two main steps: First, we formed a general facial recognition network using a large-scale face identity database (10,562 subjects) and then trained (70%) and tested (30%) a dataset of 148 Down syndrome and 257 healthy images curated through public databases. In the final testing, the deep convolutional neural network achieved 95.87% accuracy, 93.18% recall, and 97.40% specificity in Down syndrome identification. Our findings indicate that the deep convolutional neural network has the potential to support the fast, accurate, and fully automatic identification of Down syndrome and could add considerable value to the future of precision medicine. |
---|