Cargando…

Immunomodulatory Effects of a Low-Molecular Weight Polysaccharide from Enteromorpha prolifera on RAW 264.7 Macrophages and Cyclophosphamide- Induced Immunosuppression Mouse Models

The water-soluble polysaccharide EP2, from Enteromorpha prolifera, belongs to the group of polysaccharides known as glucuronoxylorhamnan, which mainly contains glucuronic acid (GlcA), xylose (Xyl), and rhamnose (Rha). The aim of this study was to detect the immunomodulatory effects of EP2 on RAW 264...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Yingjuan, Wu, Xiaolin, Jin, Weihua, Guo, Yunliang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7401259/
https://www.ncbi.nlm.nih.gov/pubmed/32605327
http://dx.doi.org/10.3390/md18070340
Descripción
Sumario:The water-soluble polysaccharide EP2, from Enteromorpha prolifera, belongs to the group of polysaccharides known as glucuronoxylorhamnan, which mainly contains glucuronic acid (GlcA), xylose (Xyl), and rhamnose (Rha). The aim of this study was to detect the immunomodulatory effects of EP2 on RAW 264.7 macrophages and cyclophosphamide (CYP)-induced immunosuppression mouse models. The cells were treated with EP2 for different time periods (0, 0.5, 1, 3, and 6 h). The results showed that EP2 promoted nitric oxide production and up-regulated the expression of pro-inflammatory cytokines, such as IL-1β, IL-6, and TNF-α, in a time-dependent manner. Furthermore, we found that EP2-activated iNOS, COX2, and NLRP3 inflammasomes, and the TLR4/MAPK/NF-κB signaling pathway played an important role. Moreover, EP2 significantly increased the body weight, spleen index, thymus index, inflammatory cell counts, and the levels of IL-1β, IL-6, and TNF-α in CYP-induced immunosuppression mouse models. These results indicate that EP2 might be a potential immunomodulatory drug and provide the scientific basis for the comprehensive utilization and evaluation of E. prolifera in future applications.