Cargando…

Chermebilaenes A and B, New Bioactive Meroterpenoids from Co-Cultures of Marine-Derived Isolates of Penicillium bilaiae MA-267 and Penicillium chermesinum EN-480

The co-cultivation of two or more different microbial strains in one culture vessel was supposed to be a viable experimental approach for enhancing the diversity of the compounds produced. Two new meroterpenoid derivatives, chermebilaenes A (1) and B (2), together with three known sesquiterpenoids,...

Descripción completa

Detalles Bibliográficos
Autores principales: Meng, Ling-Hong, Li, Xiao-Ming, Li, Hong-Lei, Wang, Bin-Gui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7401264/
https://www.ncbi.nlm.nih.gov/pubmed/32605151
http://dx.doi.org/10.3390/md18070339
Descripción
Sumario:The co-cultivation of two or more different microbial strains in one culture vessel was supposed to be a viable experimental approach for enhancing the diversity of the compounds produced. Two new meroterpenoid derivatives, chermebilaenes A (1) and B (2), together with three known sesquiterpenoids, sesquicaranoic acid B (3), cyclonerodiol (4) and bisabol-l-on-13-säuremethylester (5), were characterized from a co-culture of the marine-derived fungal isolates of Penicillium bilaiae MA-267 and Penicillium chermesinum EN-480. Neither fungus produced these compounds when cultured alone under the same conditions. Compound 1 represents an unprecedented acorane-type sesquiterpene hybridized with an octadecadienoic acid skeleton. The structures were elucidated on the basis of spectroscopic analysis, and the absolute configurations were assumed on the basis of acidic hydrolysis combined with modified Mosher’s method and electronic circular dichroism (ECD) calculations. Compound 1 showed potent inhibitory activities against Ceratobasidium cornigerum and Edwardsiella tarda.