Cargando…

Testis-specific serine kinase protein family in male fertility and as targets for non-hormonal male contraception

Male contraception is a very active area of research. Several hormonal agents have entered clinical trials, while potential non-hormonal targets have been brought to light more recently and are at earlier stages of development. The general strategy is to target genes along the molecular pathways of...

Descripción completa

Detalles Bibliográficos
Autores principales: Salicioni, Ana M, Gervasi, María G, Sosnik, Julian, Tourzani, Darya A, Nayyab, Saman, Caraballo, Diego A, Visconti, Pablo E
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7401350/
https://www.ncbi.nlm.nih.gov/pubmed/32337545
http://dx.doi.org/10.1093/biolre/ioaa064
Descripción
Sumario:Male contraception is a very active area of research. Several hormonal agents have entered clinical trials, while potential non-hormonal targets have been brought to light more recently and are at earlier stages of development. The general strategy is to target genes along the molecular pathways of sperm production, maturation, or function, and it is predicted that these novel approaches will hopefully lead to more selective male contraceptive compounds with a decreased side effect burden. Protein kinases are known to play a major role in signaling events associated with sperm differentiation and function. In this review, we focus our analysis on the testis-specific serine kinase (TSSK) protein family. We have previously shown that members of the family of TSSKs are postmeiotically expressed in male germ cells and in mature mammalian sperm. The restricted postmeiotic expression of TSSKs as well as the importance of phosphorylation in signaling processes strongly suggests that TSSKs have an important role in germ cell differentiation and/or sperm function. This prediction has been supported by the reported sterile phenotype of the Tssk6 knockout (KO) mice and of the double Tssk1 and Tssk2 KO mice and by the male subfertile phenotype observed in a Tssk4 KO mouse model.