Cargando…
59. A RADIOMICS-BASED MACHINE LEARNING MODEL FOR DISTINGUISHING RADIATION NECROSIS FROM PROGRESSION OF BRAIN METASTASES TREATED WITH STEREOTACTIC RADIOSURGERY (SRS)
PURPOSE: This study aims to test whether MRI radiomic signatures can distinguish radiation necrosis (RN) from tumor progression (TP) in a multi-institution dataset using machine learning. METHODS: Brain metastases treated with SRS were followed by serial MRI, and those showing evidence of RN or TP u...
Autores principales: | Chen, Xuguang, Parekh, Vishwa, Peng, Luke, Chan, Michael, Soike, Michael, McTyre, Emory, Jacobs, Michael, Kleinberg, Lawrence |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7401381/ http://dx.doi.org/10.1093/noajnl/vdaa073.047 |
Ejemplares similares
-
Multiparametric radiomic tissue signature and machine learning for distinguishing radiation necrosis from tumor progression after stereotactic radiosurgery
por: Chen, Xuguang, et al.
Publicado: (2021) -
A Multidimensional Connectomics- and Radiomics-Based Advanced Machine-Learning Framework to Distinguish Radiation Necrosis from True Progression in Brain Metastases
por: Cao, Yilin, et al.
Publicado: (2023) -
RADI-31. MULTI-INSTITUTIONAL VALIDATION OF BRAIN METASTASIS VELOCITY, A RECENTLY DEFINED PREDICTOR OF OUTCOMES FOLLOWING STEREOTACTIC RADIOSURGERY
por: Chan, Michael, et al.
Publicado: (2019) -
CD138 plasma cells may predict brain metastasis recurrence following resection and stereotactic radiosurgery
por: Soike, Michael H., et al.
Publicado: (2019) -
Sociodemographic predictors of patients with brain metastases treated with stereotactic radiosurgery
por: Alphonse-Sullivan, Natalie, et al.
Publicado: (2017)