Cargando…
Prazosin blocks apoptosis of endothelial progenitor cells through downregulating the Akt/NF-κB signaling pathway in a rat cerebral infarction model
Endothelial progenitor cells (EPCs) can enhance the recanalization of thrombosis during the progression of cerebral infarction. Prazosin plays a therapeutic role in expanding the peripheral vasculature and regulating infarction cardiosclerosis by inhibiting phosphoinositide signaling. However, the p...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7401792/ https://www.ncbi.nlm.nih.gov/pubmed/32765751 http://dx.doi.org/10.3892/etm.2020.9009 |
Sumario: | Endothelial progenitor cells (EPCs) can enhance the recanalization of thrombosis during the progression of cerebral infarction. Prazosin plays a therapeutic role in expanding the peripheral vasculature and regulating infarction cardiosclerosis by inhibiting phosphoinositide signaling. However, the possible mechanisms underlying the therapeutic effects of prazosin have not been fully explored. The purpose of the present study was to analyze the anti-apoptotic effects of prazosin on EPCs in a rat cerebral infarction model. The results showed that prazosin treatment decreased apoptosis of EPCs. Prazosin treatment decreased the serum expression levels of the inflammatory factors, interleukin-1β and tumor necrosis factor-α in rats with cerebral infarctions as well as in EPCs in vitro. In addition, prazosin reduced the expression levels of Akt, NF-κB, phosphorylated (p)-Akt and p-NF-κB in EPCs and the middle cerebral artery of rats with cerebral infarction. These findings demonstrated that prazosin inhibited EPC apoptosis in the cerebral infarction rats through targeting the Akt/NF-κB signaling pathway. In conclusion, these results indicated that prazosin has a preventive effect on cerebral infarction by inhibiting EPC apoptosis and by inhibiting the inflammatory response in vitro and in vivo through regulating the Akt/NF-κB signaling pathway. |
---|