Cargando…
Scattering Angle Resolved Optical Coherence Tomography Detects Early Changes in 3xTg Alzheimer's Disease Mouse Model
PURPOSE: Clinical intensity-based optical coherence tomographic retinal imaging is unable to resolve some of the earliest changes to Alzheimer's disease (AD) neurons. The aim of this pilot study was to demonstrate that scattering-angle-resolved optical coherence tomography (SAR-OCT), which is s...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7401921/ https://www.ncbi.nlm.nih.gov/pubmed/32821490 http://dx.doi.org/10.1167/tvst.9.5.18 |
_version_ | 1783566657831043072 |
---|---|
author | Gardner, Michael R. Baruah, Vikram Vargas, Gracie Motamedi, Massoud Milner, Thomas E. Rylander, Henry G. |
author_facet | Gardner, Michael R. Baruah, Vikram Vargas, Gracie Motamedi, Massoud Milner, Thomas E. Rylander, Henry G. |
author_sort | Gardner, Michael R. |
collection | PubMed |
description | PURPOSE: Clinical intensity-based optical coherence tomographic retinal imaging is unable to resolve some of the earliest changes to Alzheimer's disease (AD) neurons. The aim of this pilot study was to demonstrate that scattering-angle-resolved optical coherence tomography (SAR-OCT), which is sensitive to changes in light scattering angle, is a candidate retinal imaging modality for early AD detection. SAR-OCT signal data may be sensitive to changes in intracellular constituent morphology that are not detectable with conventional OCT. METHODS: In this cross-sectional study, retinas of a triple transgenic mouse model of AD (3xTg-AD) were imaged alongside age-matched control mice (C57BL/6J) using SAR-OCT. A total of 32 mice (12 control, 20 3xTg-Ad) at four ages (10, 20, 30, and 45 weeks) were included in this cross-sectional study, and three retinal feature sets (scattering, thickness, and angiography) were examined between the disease and control groups. RESULTS: AD mice had significantly increased scattering diversity (lower SAR-OCT C parameter) at the earliest imaging time (10 weeks). Differences in the C parameter between AD and control mice were diminished at later times when both groups showed increased scattering diversity. AD mice have reduced retinal thickness compared to controls, particularly in central regions and superficial layers. No differences in vascular density or fractional blood volume between groups were detected. CONCLUSIONS: SAR-OCT is sensitive to scattering angle changes in a 3xTg-AD mouse model and could provide early-stage biomarkers for neurodegenerative diseases such as AD. TRANSLATIONAL RELEVANCE: Clinical OCT systems may be modified to record SAR-OCT images for non-invasive retinal diagnostic imaging of patients with neurodegenerative diseases such as AD. |
format | Online Article Text |
id | pubmed-7401921 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | The Association for Research in Vision and Ophthalmology |
record_format | MEDLINE/PubMed |
spelling | pubmed-74019212020-08-18 Scattering Angle Resolved Optical Coherence Tomography Detects Early Changes in 3xTg Alzheimer's Disease Mouse Model Gardner, Michael R. Baruah, Vikram Vargas, Gracie Motamedi, Massoud Milner, Thomas E. Rylander, Henry G. Transl Vis Sci Technol Article PURPOSE: Clinical intensity-based optical coherence tomographic retinal imaging is unable to resolve some of the earliest changes to Alzheimer's disease (AD) neurons. The aim of this pilot study was to demonstrate that scattering-angle-resolved optical coherence tomography (SAR-OCT), which is sensitive to changes in light scattering angle, is a candidate retinal imaging modality for early AD detection. SAR-OCT signal data may be sensitive to changes in intracellular constituent morphology that are not detectable with conventional OCT. METHODS: In this cross-sectional study, retinas of a triple transgenic mouse model of AD (3xTg-AD) were imaged alongside age-matched control mice (C57BL/6J) using SAR-OCT. A total of 32 mice (12 control, 20 3xTg-Ad) at four ages (10, 20, 30, and 45 weeks) were included in this cross-sectional study, and three retinal feature sets (scattering, thickness, and angiography) were examined between the disease and control groups. RESULTS: AD mice had significantly increased scattering diversity (lower SAR-OCT C parameter) at the earliest imaging time (10 weeks). Differences in the C parameter between AD and control mice were diminished at later times when both groups showed increased scattering diversity. AD mice have reduced retinal thickness compared to controls, particularly in central regions and superficial layers. No differences in vascular density or fractional blood volume between groups were detected. CONCLUSIONS: SAR-OCT is sensitive to scattering angle changes in a 3xTg-AD mouse model and could provide early-stage biomarkers for neurodegenerative diseases such as AD. TRANSLATIONAL RELEVANCE: Clinical OCT systems may be modified to record SAR-OCT images for non-invasive retinal diagnostic imaging of patients with neurodegenerative diseases such as AD. The Association for Research in Vision and Ophthalmology 2020-04-24 /pmc/articles/PMC7401921/ /pubmed/32821490 http://dx.doi.org/10.1167/tvst.9.5.18 Text en Copyright 2020 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. |
spellingShingle | Article Gardner, Michael R. Baruah, Vikram Vargas, Gracie Motamedi, Massoud Milner, Thomas E. Rylander, Henry G. Scattering Angle Resolved Optical Coherence Tomography Detects Early Changes in 3xTg Alzheimer's Disease Mouse Model |
title | Scattering Angle Resolved Optical Coherence Tomography Detects Early Changes in 3xTg Alzheimer's Disease Mouse Model |
title_full | Scattering Angle Resolved Optical Coherence Tomography Detects Early Changes in 3xTg Alzheimer's Disease Mouse Model |
title_fullStr | Scattering Angle Resolved Optical Coherence Tomography Detects Early Changes in 3xTg Alzheimer's Disease Mouse Model |
title_full_unstemmed | Scattering Angle Resolved Optical Coherence Tomography Detects Early Changes in 3xTg Alzheimer's Disease Mouse Model |
title_short | Scattering Angle Resolved Optical Coherence Tomography Detects Early Changes in 3xTg Alzheimer's Disease Mouse Model |
title_sort | scattering angle resolved optical coherence tomography detects early changes in 3xtg alzheimer's disease mouse model |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7401921/ https://www.ncbi.nlm.nih.gov/pubmed/32821490 http://dx.doi.org/10.1167/tvst.9.5.18 |
work_keys_str_mv | AT gardnermichaelr scatteringangleresolvedopticalcoherencetomographydetectsearlychangesin3xtgalzheimersdiseasemousemodel AT baruahvikram scatteringangleresolvedopticalcoherencetomographydetectsearlychangesin3xtgalzheimersdiseasemousemodel AT vargasgracie scatteringangleresolvedopticalcoherencetomographydetectsearlychangesin3xtgalzheimersdiseasemousemodel AT motamedimassoud scatteringangleresolvedopticalcoherencetomographydetectsearlychangesin3xtgalzheimersdiseasemousemodel AT milnerthomase scatteringangleresolvedopticalcoherencetomographydetectsearlychangesin3xtgalzheimersdiseasemousemodel AT rylanderhenryg scatteringangleresolvedopticalcoherencetomographydetectsearlychangesin3xtgalzheimersdiseasemousemodel |