Cargando…

S-1-Propenylcysteine, a sulfur compound in aged garlic extract, alleviates cold-induced reduction in peripheral blood flow in rat via activation of the AMPK/eNOS/NO pathway

Aged garlic extract (AGE) has been shown to improve peripheral circulatory disturbances in both clinical trials and experimental animal models. To investigate the effect of S-1-propenylcysteine (S1PC), a characteristic sulfur compound in AGE, on cold-induced reduction in tail blood flow of rat, Wist...

Descripción completa

Detalles Bibliográficos
Autores principales: Ushijima, Mitsuyasu, Kunimura, Kayo, Suzuki, Jun-Ichiro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7401927/
https://www.ncbi.nlm.nih.gov/pubmed/32765777
http://dx.doi.org/10.3892/etm.2020.8969
Descripción
Sumario:Aged garlic extract (AGE) has been shown to improve peripheral circulatory disturbances in both clinical trials and experimental animal models. To investigate the effect of S-1-propenylcysteine (S1PC), a characteristic sulfur compound in AGE, on cold-induced reduction in tail blood flow of rat, Wistar rats were individually placed in a restraint cage and given the treatment with cold water (15˚C) after the oral administration of AGE or its constituents S1PC, S-allylcysteine (SAC) and S-allylmercaptocysteine (SAMC). After the cold-treatment the tail blood flow of rats was measured at the indicated times. The pretreatment with AGE (2 g/kg BW) and S1PC (6.5 mg/kg BW) significantly alleviated the reduction of rat tail blood flow induced by cold treatment. The effect of S1PC was dose-dependent and maximal at the dose of 6.5 mg/kg BW, whereas SAC and SAMC were ineffective. To gain insight into the mechanism of S1PC action, the concentration of nitrogen oxide metabolites (NOx) in the plasma and the levels of phosphorylated endothelial nitric oxide synthase (eNOS) and 5'-AMP-activated protein kinase (AMPK) in the aorta were measured. The pretreatment with S1PC significantly increased the plasma concentration of NOx as well as the level of phosphorylated form of AMPK and eNOS in the aorta after cold-treatment. The present findings suggest that S1PC is a major constituent responsible for the effect of AGE to alleviate the cold-induced reduction of peripheral blood flow in rat by acting on the AMPK/eNOS/NO pathway in the aorta.