Cargando…
Classification of the urinary metabolome using machine learning and potential applications to diagnosing interstitial cystitis
With the advent of artificial intelligence (AI) in biostatistical analysis and modeling, machine learning can potentially be applied into developing diagnostic models for interstitial cystitis (IC). In the current clinical setting, urologists are dependent on cystoscopy and questionnaire-based decis...
Autores principales: | Tong, Feng, Shahid, Muhammad, Jin, Peng, Jung, Sungyong, Kim, Won Hwa, Kim, Jayoung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Bladder
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7401992/ https://www.ncbi.nlm.nih.gov/pubmed/32775485 http://dx.doi.org/10.14440/bladder.2020.815 |
Ejemplares similares
-
Menthol, a unique urinary volatile compound, is associated with chronic inflammation in interstitial cystitis
por: Shahid, Muhammad, et al.
Publicado: (2018) -
Metabolomic and lipidomic approaches to identify biomarkers for bladder cancer and interstitial cystitis
por: Shahid, Muhammad, et al.
Publicado: (2020) -
Metabolomics Insights Into Pathophysiological Mechanisms of Interstitial Cystitis
por: Fiehn, Oliver, et al.
Publicado: (2014) -
Interstitial Cystitis-Associated Urinary Metabolites Identified by Mass-Spectrometry Based Metabolomics Analysis
por: Kind, Tobias, et al.
Publicado: (2016) -
Urinary Metabolite Profiling
Combined with Computational
Analysis Predicts Interstitial Cystitis-Associated Candidate Biomarkers
por: Wen, He, et al.
Publicado: (2014)