Cargando…
Deep learning‐based reconstruction of in vivo pelvis conductivity with a 3D patch‐based convolutional neural network trained on simulated MR data
PURPOSE: To demonstrate that mapping pelvis conductivity at 3T with deep learning (DL) is feasible. METHODS: 210 dielectric pelvic models were generated based on CT scans of 42 cervical cancer patients. For all dielectric models, electromagnetic and MR simulations with realistic accuracy and precisi...
Autores principales: | Gavazzi, Soraya, van den Berg, Cornelis A. T., Savenije, Mark H. F., Kok, H. Petra, de Boer, Peter, Stalpers, Lukas J. A., Lagendijk, Jan J. W., Crezee, Hans, van Lier, Astrid L. H. M. W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7402024/ https://www.ncbi.nlm.nih.gov/pubmed/32314825 http://dx.doi.org/10.1002/mrm.28285 |
Ejemplares similares
-
Accuracy and precision of electrical permittivity mapping at 3T: the impact of three [Formula: see text] mapping techniques
por: Gavazzi, Soraya, et al.
Publicado: (2019) -
Deep learning–based MR‐to‐CT synthesis: The influence of varying gradient echo–based MR images as input channels
por: Florkow, Mateusz C., et al.
Publicado: (2019) -
Transceive phase mapping using the PLANET method and its application for conductivity mapping in the brain
por: Gavazzi, Soraya, et al.
Publicado: (2019) -
A deep learning method for image‐based subject‐specific local SAR assessment
por: Meliadò, E.F., et al.
Publicado: (2019) -
Nonrigid 3D motion estimation at high temporal resolution from prospectively undersampled k‐space data using low‐rank MR‐MOTUS
por: Huttinga, Niek R. F., et al.
Publicado: (2020)