Cargando…

Enteromorpha prolifera Extract Improves Memory in Scopolamine-Treated Mice via Downregulating Amyloid-β Expression and Upregulating BDNF/TrkB Pathway

Enteromorpha prolifera, a green alga, has long been used in food diets as well as traditional remedies in East Asia. Our preliminary study demonstrated that an ethyl acetate extract of Enteromorpha prolifera (EAEP) exhibited the strongest antioxidant activity compared to ethanol or water extracts. N...

Descripción completa

Detalles Bibliográficos
Autores principales: Baek, Seung Yeon, Li, Fu Yi, Kim, Da Hee, Kim, Su Jin, Kim, Mee Ree
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7402154/
https://www.ncbi.nlm.nih.gov/pubmed/32679768
http://dx.doi.org/10.3390/antiox9070620
Descripción
Sumario:Enteromorpha prolifera, a green alga, has long been used in food diets as well as traditional remedies in East Asia. Our preliminary study demonstrated that an ethyl acetate extract of Enteromorpha prolifera (EAEP) exhibited the strongest antioxidant activity compared to ethanol or water extracts. Nonetheless, there has been no report on the effect of EAEP on memory impairment due to oxidative damage. This study investigated whether EAEP could attenuate memory deficits in an oxidative stress-induced mouse model. EAEP was orally administered (50 or 100 mg/kg body weight (b.w.)) to mice and then scopolamine was administered. The oral administration of EAEP at 100 mg/kg b.w. significantly restored memory impairments induced by scopolamine, as evaluated by the Morris water maze test, and the passive avoidance test. Further, EAEP upregulated the protein expression of BDNF, p-CREB, p-TrkB, and p-Akt. Moreover, EAEP downregulated the expression of amyloid-β, tau, and APP. The regulation of cholinergic marker enzyme activities and the protection of neuronal cells from oxidative stress-induced cell death in the brain of mice via the downregulation of amyloid-β and the upregulation of the BDNF/TrkB pathway by EAEP suggest its potential as a pharmaceutical candidate to prevent neurodegenerative diseases.