Cargando…

Environmental DNA and RNA as Records of Human Exposome, Including Biotic/Abiotic Exposures and Its Implications in the Assessment of the Role of Environment in Chronic Diseases

Most of environment-related diseases often result from multiple exposures of abiotic and/or biotic stressors across various life stages. The application of environmental DNA/RNA (eDNA/eRNA) to advance ecological understanding has been very successfully used. However, the eminent extension of eDNA/eR...

Descripción completa

Detalles Bibliográficos
Autores principales: Thakur, Indu Shekhar, Roy, Deodutta
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7402316/
https://www.ncbi.nlm.nih.gov/pubmed/32664313
http://dx.doi.org/10.3390/ijms21144879
Descripción
Sumario:Most of environment-related diseases often result from multiple exposures of abiotic and/or biotic stressors across various life stages. The application of environmental DNA/RNA (eDNA/eRNA) to advance ecological understanding has been very successfully used. However, the eminent extension of eDNA/eRNA-based approaches to estimate human exposure to biotic and/or abiotic environmental stressors to understand the environmental causes of chronic diseases has yet to start. Here, we introduce the potential of eDNA/eRNA for bio-monitoring of human exposome and health effects in the real environmental or occupational settings. This review is the first of its kind to discuss how eDNA/eRNA-based approaches can be applied for assessing the human exposome. eDNA-based exposome assessment is expected to rely on our ability to capture the genome- and epigenome-wide signatures left behind by individuals in the indoor and outdoor physical spaces through shedding, excreting, etc. Records of eDNA/eRNA exposome may reflect the early appearance, persistence, and presence of biotic and/or abiotic-exposure-mediated modifications in these nucleic acid molecules. Functional genome- and epigenome-wide mapping of eDNA offer great promise to help elucidate the human exposome. Assessment of longitudinal exposure to physical, biological, and chemical agents present in the environment through eDNA/eRNA may enable the building of an integrative causal dynamic stochastic model to estimate environmental causes of human health deficits. This model is expected to incorporate key biological pathways and gene networks linking individuals, their geographic locations, and random multi-hits of environmental factors. Development and validation of monitoring of eDNA/eRNA exposome should seriously be considered to introduce into safety and risk assessment and as surrogates of chronic exposure to environmental stressors. Here we highlight that eDNA/eRNA reflecting longitudinal exposure of both biotic and abiotic environmental stressors may serve as records of human exposome and discuss its application as molecular tools for understanding the toxicogenomics basis of environment-related health deficits.