Cargando…
Evaluating the effect of city lock-down on controlling COVID-19 propagation through deep learning and network science models
The special epistemic characteristics of the COVID-19, such as the long incubation period and the infection through asymptomatic cases, put severe challenge to the containment of its outbreak. By the end of March 2020, China has successfully controlled the within- spreading of COVID-19 at a high cos...
Autores principales: | Zhang, Xiaoqi, Ji, Zheng, Zheng, Yanqiao, Ye, Xinyue, Li, Dong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7402371/ https://www.ncbi.nlm.nih.gov/pubmed/32834328 http://dx.doi.org/10.1016/j.cities.2020.102869 |
Ejemplares similares
-
The education-chasing labor rush in China identified by a heterogeneous migration-network game
por: Zhang, Xiaoqi, et al.
Publicado: (2020) -
Locked Down, Locked Out
por: Schenwar, Maya
Publicado: (2014) -
Comparative assessment of modeling deep learning networks for modeling ground-level ozone concentrations of pandemic lock-down period
por: Ekinci, Ekin, et al.
Publicado: (2021) -
Back-Propagation Learning in Deep Spike-By-Spike Networks
por: Rotermund, David, et al.
Publicado: (2019) -
Locked-down digital work
por: Richter, Alexander
Publicado: (2020)