Cargando…
Beyond convexity—Contraction and global convergence of gradient descent
This paper considers the analysis of continuous time gradient-based optimization algorithms through the lens of nonlinear contraction theory. It demonstrates that in the case of a time-invariant objective, most elementary results on gradient descent based on convexity can be replaced by much more ge...
Autores principales: | Wensing, Patrick M., Slotine, Jean-Jacques |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7402485/ https://www.ncbi.nlm.nih.gov/pubmed/32750097 http://dx.doi.org/10.1371/journal.pone.0236661 |
Ejemplares similares
-
Correction: Beyond convexity—Contraction and global convergence of gradient descent
Publicado: (2020) -
On the convergence of the gradient projection method for convex optimal control problems with bang–bang solutions
por: Preininger, J., et al.
Publicado: (2018) -
Correspondence between neuroevolution and gradient descent
por: Whitelam, Stephen, et al.
Publicado: (2021) -
Gradient-Descent-like Ghost Imaging
por: Yu, Wen-Kai, et al.
Publicado: (2021) -
Gradient Descent Optimization in Gene Regulatory Pathways
por: Das, Mouli, et al.
Publicado: (2010)