Cargando…
A novel Monte Carlo simulation procedure for modelling COVID-19 spread over time
The coronavirus disease 2019 (COVID-19) has now spread throughout most countries in the world causing heavy life losses and damaging social-economic impacts. Following a stochastic point process modelling approach, a Monte Carlo simulation model was developed to represent the COVID-19 spread dynamic...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7403316/ https://www.ncbi.nlm.nih.gov/pubmed/32753639 http://dx.doi.org/10.1038/s41598-020-70091-1 |
Sumario: | The coronavirus disease 2019 (COVID-19) has now spread throughout most countries in the world causing heavy life losses and damaging social-economic impacts. Following a stochastic point process modelling approach, a Monte Carlo simulation model was developed to represent the COVID-19 spread dynamics. First, we examined various expected performances (theoretical properties) of the simulation model assuming a number of arbitrarily defined scenarios. Simulation studies were then performed on the real COVID-19 data reported (over the period of 1 March to 1 May) for Australia and United Kingdom (UK). Given the initial number of COVID-19 infection active cases were around 10 for both countries, the model estimated that the number of active cases would peak around 29 March in Australia (≈ 1,700 cases) and around 22 April in UK (≈ 22,860 cases); ultimately the total confirmed cases could sum to 6,790 for Australia in about 75 days and 206,480 for UK in about 105 days. The results of the estimated COVID-19 reproduction numbers were consistent with what was reported in the literature. This simulation model was considered an effective and adaptable decision making/what-if analysis tool in battling COVID-19 in the immediate need, and for modelling any other infectious diseases in the future. |
---|