Cargando…

Recycled arc mantle recovered from the Mid-Atlantic Ridge

Plate tectonics and mantle dynamics necessitate mantle recycling throughout Earth’s history, yet direct geochemical evidence for mantle reprocessing remains elusive. Here we present evidence of recycled supra-subduction zone mantle wedge peridotite dredged from the Mid-Atlantic Ridge near 16°30′N. P...

Descripción completa

Detalles Bibliográficos
Autores principales: Urann, B. M., Dick, H. J. B., Parnell-Turner, R., Casey, J. F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7403410/
https://www.ncbi.nlm.nih.gov/pubmed/32753577
http://dx.doi.org/10.1038/s41467-020-17604-8
Descripción
Sumario:Plate tectonics and mantle dynamics necessitate mantle recycling throughout Earth’s history, yet direct geochemical evidence for mantle reprocessing remains elusive. Here we present evidence of recycled supra-subduction zone mantle wedge peridotite dredged from the Mid-Atlantic Ridge near 16°30′N. Peridotite trace-element characteristics are inconsistent with fractional anhydrous melting typically associated with a mid-ocean ridge setting. Instead, the samples are best explained by hydrous flux melting which changed the melting reactions such that clinopyroxene was not exhausted at high degrees of melting and was retained in the residuum. Based on along-axis ridge depth variations, this buoyant refractory arc mantle is likely compensated at depth by denser, likely garnet-rich, lithologies within the mantle column. Our results suggest that highly refractory arc mantle relicts are entrained in the upper mantle and may constitute >60% of the upper mantle by volume. These highly refractory mantle domains, which contribute little to mantle melting, are under-represented in compilations of mantle composition that rely on inverted basalt compositions alone.