Cargando…
Integrated graphene oxide resistive element in tunable RF filters
Adaptable communication systems are of great interest as they provide dynamic front end to accommodate the tunable spectrum management in advanced wireless systems. Memristor (acronym of memory resistor) is an emerging technology part of resistive RAM (RRAM) that has good potential for application i...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7403419/ https://www.ncbi.nlm.nih.gov/pubmed/32753677 http://dx.doi.org/10.1038/s41598-020-70041-x |
Sumario: | Adaptable communication systems are of great interest as they provide dynamic front end to accommodate the tunable spectrum management in advanced wireless systems. Memristor (acronym of memory resistor) is an emerging technology part of resistive RAM (RRAM) that has good potential for application in reconfigurable RF devices. The potentiality of using resistive switches for frequency tuning of high frequency RF filters is successfully explored in this article for the first time. Tunable RF filter is designed with detailed simulation using Ansys HFSS, and then correlated with measured results from experiment. As a proof of concept, a prototype of the tunable RF filter is fabricated by using a graphene oxide (GO) integrated with a conventional microstrip open stub notch filter. The resistor switching ability of the device is exploited for the frequency tuning. The resonating length of the notch filter is varied by changing the resistance of the active GO material between ‘HIGH’ (OFF) and ‘LOW’ (ON) resistance states. The measured results demonstrate the great potential of using RRAM in tunable RF devices. It also proves the possibility of tuning RF devices without any localized surface mount device (SMD) element or complex realization technique. |
---|