Cargando…
Predicting treatment response to neoadjuvant chemoradiotherapy in local advanced rectal cancer by biopsy digital pathology image features
Quantitative features extracted from biopsy digital pathology images can provide predictive information for neoadjuvant chemoradiotherapy (nCRT) in local advanced rectal cancer (LARC) Machine learning technologies are applied to build the digital‐pathology‐based pathology signature The pathology sig...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7403709/ https://www.ncbi.nlm.nih.gov/pubmed/32594660 http://dx.doi.org/10.1002/ctm2.110 |
Sumario: | Quantitative features extracted from biopsy digital pathology images can provide predictive information for neoadjuvant chemoradiotherapy (nCRT) in local advanced rectal cancer (LARC) Machine learning technologies are applied to build the digital‐pathology‐based pathology signature The pathology signature is an independent predictor of treatment response to nCRT in LARC [Image: see text] |
---|