Cargando…
Predicting treatment response to neoadjuvant chemoradiotherapy in local advanced rectal cancer by biopsy digital pathology image features
Quantitative features extracted from biopsy digital pathology images can provide predictive information for neoadjuvant chemoradiotherapy (nCRT) in local advanced rectal cancer (LARC) Machine learning technologies are applied to build the digital‐pathology‐based pathology signature The pathology sig...
Autores principales: | Zhang, Fang, Yao, Su, Li, Zhi, Liang, Changhong, Zhao, Ke, Huang, Yanqi, Gao, Ying, Qu, Jinrong, Li, Zhenhui, Liu, Zaiyi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7403709/ https://www.ncbi.nlm.nih.gov/pubmed/32594660 http://dx.doi.org/10.1002/ctm2.110 |
Ejemplares similares
-
The value of the tumour-stroma ratio for predicting neoadjuvant chemoradiotherapy response in locally advanced rectal cancer: a case control study
por: Liang, Yanting, et al.
Publicado: (2021) -
Predicting Neoadjuvant Chemoradiotherapy Response in Locally Advanced Rectal Cancer Using Tumor-Infiltrating Lymphocytes Density
por: Xu, Yao, et al.
Publicado: (2021) -
Local environment in biopsy better predict the pathological response to neoadjuvant chemoradiotherapy in rectal cancer
por: Huang, Yan, et al.
Publicado: (2019) -
The value of forceps biopsy and core needle biopsy in prediction of pathologic complete remission in locally advanced rectal cancer treated with neoadjuvant chemoradiotherapy
por: Tang, Jing-Hua, et al.
Publicado: (2015) -
Deep Learning Model for Predicting the Pathological Complete Response to Neoadjuvant Chemoradiotherapy of Locally Advanced Rectal Cancer
por: Lou, Xiaoying, et al.
Publicado: (2022)