Cargando…

Scrodentoids H and I, a Pair of Natural Epimerides from Scrophularia dentata, Inhibit Inflammation through JNK-STAT3 Axis in THP-1 Cells

BACKGROUND: Scrophularia dentata is an important medicinal plant and used for the treatment of exanthema and fever in Traditional Tibetan Medicine. Scrodentoids H and I (SHI), a pair of epimerides of C(19)-norditerpenoids isolated from Scrophularia dentata, could transfer to each other in room tempe...

Descripción completa

Detalles Bibliográficos
Autores principales: Mao, Gaohui, Sun, Liqin, Xu, Jinwen, Li, Yiming, Dunzhu, Ciren, Zhang, Liuqiang, Qian, Fei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7403932/
https://www.ncbi.nlm.nih.gov/pubmed/32802115
http://dx.doi.org/10.1155/2020/1842347
Descripción
Sumario:BACKGROUND: Scrophularia dentata is an important medicinal plant and used for the treatment of exanthema and fever in Traditional Tibetan Medicine. Scrodentoids H and I (SHI), a pair of epimerides of C(19)-norditerpenoids isolated from Scrophularia dentata, could transfer to each other in room temperature and were firstly reported in our previous work. Here, we first reported the anti-inflammatory effects of SHI on LPS-induced inflammation. PURPOSE: To evaluate the anti-inflammatory property of SHI, we investigated the effects of SHI on LPS-activated THP-1 cells. METHODS: THP-1 human macrophages were pretreated with SHI and stimulated with LPS. Proinflammatory cytokines IL-1β and IL-6 were measured by RT-PCR and enzyme-linked immunosorbent assays (ELISA). The mechanism of action involving phosphorylation of ERK, JNK, P38, and STAT3 was measured by western Blot. The NF-κB promoter activity was evaluated by Dual-Luciferase Reporter Assay System in TNF-α stimulated 293T cells. RESULTS: SHI dose-dependently reduced the production of proinflammatory cytokines IL-1β and IL-6. The ability of SHI to reduce production of cytokines is associated with phosphorylation depress of JNK and STAT3 rather than p38, ERK, and NF-κB promoter. CONCLUSIONS: Our experimental results indicated that anti-inflammatory effects of SHI exhibit attenuation of LPS-induced inflammation and inhibit activation through JNK/STAT3 pathway in macrophages. These results suggest that SHI might have a potential in treating inflammatory disease.