Cargando…
Machine Learning Algorithms Identify Pathogen-Specific Biomarkers of Clinical and Metabolomic Characteristics in Septic Patients with Bacterial Infections
Sepsis is a high-mortality disease that is infected by bacteria, but pathogens in individual patients are difficult to diagnosis. Metabolomic changes triggered by microbial activity provide us with the possibility of accurately identifying infection. We adopted machine learning methods for training...
Autores principales: | Zheng, Lingling, Lin, Fangqin, Zhu, Changxi, Liu, Guangjian, Wu, Xiaohui, Wu, Zhiyuan, Zheng, Jianbin, Xia, Huimin, Cai, Yi, Liang, Huiying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7403934/ https://www.ncbi.nlm.nih.gov/pubmed/32802867 http://dx.doi.org/10.1155/2020/6950576 |
Ejemplares similares
-
Machine learning applications for prediction of relapse in childhood acute lymphoblastic leukemia
por: Pan, Liyan, et al.
Publicado: (2017) -
Formation of the calcarine sulcus: a potential marker to predict the progression in utero of isolated mild fetal ventriculomegaly
por: Li, Hehong, et al.
Publicado: (2017) -
Machine learning identifies girls with central precocious puberty based on multisource data
por: Pan, Liyan, et al.
Publicado: (2020) -
Developing a Machine Learning System for Identification of Severe Hand, Foot, and Mouth Disease from Electronic Medical Record Data
por: Liu, Guangjian, et al.
Publicado: (2017) -
Application of Metabolomics in Various Types of Diabetes
por: Wu, Fangqin, et al.
Publicado: (2022)