Cargando…

From the Performance to the Essence: The Biological Mechanisms of How Tantalum Contributes to Osteogenesis

Despite the brilliant bioactive performance of tantalum as an orthopedic biomaterial verified through laboratory researches and clinical practice in the past decades, scarce evidences about the essential mechanisms of how tantalum contributes to osteogenesis were systematically discussed. Up to now,...

Descripción completa

Detalles Bibliográficos
Autores principales: Qian, Hu, Lei, Ting, Ye, Zhimin, Hu, Yihe, Lei, Pengfei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7403943/
https://www.ncbi.nlm.nih.gov/pubmed/32802853
http://dx.doi.org/10.1155/2020/5162524
Descripción
Sumario:Despite the brilliant bioactive performance of tantalum as an orthopedic biomaterial verified through laboratory researches and clinical practice in the past decades, scarce evidences about the essential mechanisms of how tantalum contributes to osteogenesis were systematically discussed. Up to now, a few studies have uncovered preliminarily the biological mechanism of tantalum in osteogenic differentiation and osteogenesis; it is of great necessity to map out the panorama through which tantalum contributes to new bone formation. This minireview summarized current advances to demonstrate the probable signaling pathways and underlying molecular cascades through which tantalum orchestrates osteogenesis, which mainly contain Wnt/β-catenin signaling pathway, BMP signaling pathway, TGF-β signaling pathway, and integrin signaling pathway. Limits of subsistent studies and further work are also discussed, providing a novel vision for the study and application of tantalum.