Cargando…
Colloidal Quantum Dot Bulk Heterojunction Solids with Near‐Unity Charge Extraction Efficiency
Colloidal quantum dots (CQDs) are of interest for optoelectronic applications owing to their tunable properties and ease of processing. Large‐diameter CQDs offer optical response in the infrared (IR), beyond the bandgap of c‐Si and perovskites. The absorption coefficient of IR CQDs (≈10(4) cm(−1)) e...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7404161/ https://www.ncbi.nlm.nih.gov/pubmed/32775165 http://dx.doi.org/10.1002/advs.202000894 |
_version_ | 1783567090981011456 |
---|---|
author | Choi, Min‐Jae Baek, Se‐Woong Lee, Seungjin Biondi, Margherita Zheng, Chao Todorovic, Petar Li, Peicheng Hoogland, Sjoerd Lu, Zheng‐Hong de Arquer, F. Pelayo García Sargent, Edward H. |
author_facet | Choi, Min‐Jae Baek, Se‐Woong Lee, Seungjin Biondi, Margherita Zheng, Chao Todorovic, Petar Li, Peicheng Hoogland, Sjoerd Lu, Zheng‐Hong de Arquer, F. Pelayo García Sargent, Edward H. |
author_sort | Choi, Min‐Jae |
collection | PubMed |
description | Colloidal quantum dots (CQDs) are of interest for optoelectronic applications owing to their tunable properties and ease of processing. Large‐diameter CQDs offer optical response in the infrared (IR), beyond the bandgap of c‐Si and perovskites. The absorption coefficient of IR CQDs (≈10(4) cm(−1)) entails the need for micrometer‐thick films to maximize the absorption of IR light. This exceeds the thickness compatible with the efficient extraction of photogenerated carriers, a fact that limits device performance. Here, CQD bulk heterojunction solids are demonstrated that, with extended carrier transport length, enable efficient IR light harvesting. An in‐solution doping strategy for large‐diameter CQDs is devised that addresses the complex interplay between (100) facets and doping agents, enabling to control CQD doping, energetic configuration, and size homogeneity. The hetero‐offset between n‐type CQDs and p‐type CQDs is manipulated to drive the transfer of electrons and holes into distinct carrier extraction pathways. This enables to form active layers exceeding thicknesses of 700 nm without compromising open‐circuit voltage and fill factor. As a result, >90% charge extraction efficiency across the ultraviolet to IR range (350–1400 nm) is documented. |
format | Online Article Text |
id | pubmed-7404161 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-74041612020-08-06 Colloidal Quantum Dot Bulk Heterojunction Solids with Near‐Unity Charge Extraction Efficiency Choi, Min‐Jae Baek, Se‐Woong Lee, Seungjin Biondi, Margherita Zheng, Chao Todorovic, Petar Li, Peicheng Hoogland, Sjoerd Lu, Zheng‐Hong de Arquer, F. Pelayo García Sargent, Edward H. Adv Sci (Weinh) Communications Colloidal quantum dots (CQDs) are of interest for optoelectronic applications owing to their tunable properties and ease of processing. Large‐diameter CQDs offer optical response in the infrared (IR), beyond the bandgap of c‐Si and perovskites. The absorption coefficient of IR CQDs (≈10(4) cm(−1)) entails the need for micrometer‐thick films to maximize the absorption of IR light. This exceeds the thickness compatible with the efficient extraction of photogenerated carriers, a fact that limits device performance. Here, CQD bulk heterojunction solids are demonstrated that, with extended carrier transport length, enable efficient IR light harvesting. An in‐solution doping strategy for large‐diameter CQDs is devised that addresses the complex interplay between (100) facets and doping agents, enabling to control CQD doping, energetic configuration, and size homogeneity. The hetero‐offset between n‐type CQDs and p‐type CQDs is manipulated to drive the transfer of electrons and holes into distinct carrier extraction pathways. This enables to form active layers exceeding thicknesses of 700 nm without compromising open‐circuit voltage and fill factor. As a result, >90% charge extraction efficiency across the ultraviolet to IR range (350–1400 nm) is documented. John Wiley and Sons Inc. 2020-06-17 /pmc/articles/PMC7404161/ /pubmed/32775165 http://dx.doi.org/10.1002/advs.202000894 Text en © 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Communications Choi, Min‐Jae Baek, Se‐Woong Lee, Seungjin Biondi, Margherita Zheng, Chao Todorovic, Petar Li, Peicheng Hoogland, Sjoerd Lu, Zheng‐Hong de Arquer, F. Pelayo García Sargent, Edward H. Colloidal Quantum Dot Bulk Heterojunction Solids with Near‐Unity Charge Extraction Efficiency |
title | Colloidal Quantum Dot Bulk Heterojunction Solids with Near‐Unity Charge Extraction Efficiency |
title_full | Colloidal Quantum Dot Bulk Heterojunction Solids with Near‐Unity Charge Extraction Efficiency |
title_fullStr | Colloidal Quantum Dot Bulk Heterojunction Solids with Near‐Unity Charge Extraction Efficiency |
title_full_unstemmed | Colloidal Quantum Dot Bulk Heterojunction Solids with Near‐Unity Charge Extraction Efficiency |
title_short | Colloidal Quantum Dot Bulk Heterojunction Solids with Near‐Unity Charge Extraction Efficiency |
title_sort | colloidal quantum dot bulk heterojunction solids with near‐unity charge extraction efficiency |
topic | Communications |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7404161/ https://www.ncbi.nlm.nih.gov/pubmed/32775165 http://dx.doi.org/10.1002/advs.202000894 |
work_keys_str_mv | AT choiminjae colloidalquantumdotbulkheterojunctionsolidswithnearunitychargeextractionefficiency AT baeksewoong colloidalquantumdotbulkheterojunctionsolidswithnearunitychargeextractionefficiency AT leeseungjin colloidalquantumdotbulkheterojunctionsolidswithnearunitychargeextractionefficiency AT biondimargherita colloidalquantumdotbulkheterojunctionsolidswithnearunitychargeextractionefficiency AT zhengchao colloidalquantumdotbulkheterojunctionsolidswithnearunitychargeextractionefficiency AT todorovicpetar colloidalquantumdotbulkheterojunctionsolidswithnearunitychargeextractionefficiency AT lipeicheng colloidalquantumdotbulkheterojunctionsolidswithnearunitychargeextractionefficiency AT hooglandsjoerd colloidalquantumdotbulkheterojunctionsolidswithnearunitychargeextractionefficiency AT luzhenghong colloidalquantumdotbulkheterojunctionsolidswithnearunitychargeextractionefficiency AT dearquerfpelayogarcia colloidalquantumdotbulkheterojunctionsolidswithnearunitychargeextractionefficiency AT sargentedwardh colloidalquantumdotbulkheterojunctionsolidswithnearunitychargeextractionefficiency |