Cargando…

Colloidal Quantum Dot Bulk Heterojunction Solids with Near‐Unity Charge Extraction Efficiency

Colloidal quantum dots (CQDs) are of interest for optoelectronic applications owing to their tunable properties and ease of processing. Large‐diameter CQDs offer optical response in the infrared (IR), beyond the bandgap of c‐Si and perovskites. The absorption coefficient of IR CQDs (≈10(4) cm(−1)) e...

Descripción completa

Detalles Bibliográficos
Autores principales: Choi, Min‐Jae, Baek, Se‐Woong, Lee, Seungjin, Biondi, Margherita, Zheng, Chao, Todorovic, Petar, Li, Peicheng, Hoogland, Sjoerd, Lu, Zheng‐Hong, de Arquer, F. Pelayo García, Sargent, Edward H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7404161/
https://www.ncbi.nlm.nih.gov/pubmed/32775165
http://dx.doi.org/10.1002/advs.202000894
_version_ 1783567090981011456
author Choi, Min‐Jae
Baek, Se‐Woong
Lee, Seungjin
Biondi, Margherita
Zheng, Chao
Todorovic, Petar
Li, Peicheng
Hoogland, Sjoerd
Lu, Zheng‐Hong
de Arquer, F. Pelayo García
Sargent, Edward H.
author_facet Choi, Min‐Jae
Baek, Se‐Woong
Lee, Seungjin
Biondi, Margherita
Zheng, Chao
Todorovic, Petar
Li, Peicheng
Hoogland, Sjoerd
Lu, Zheng‐Hong
de Arquer, F. Pelayo García
Sargent, Edward H.
author_sort Choi, Min‐Jae
collection PubMed
description Colloidal quantum dots (CQDs) are of interest for optoelectronic applications owing to their tunable properties and ease of processing. Large‐diameter CQDs offer optical response in the infrared (IR), beyond the bandgap of c‐Si and perovskites. The absorption coefficient of IR CQDs (≈10(4) cm(−1)) entails the need for micrometer‐thick films to maximize the absorption of IR light. This exceeds the thickness compatible with the efficient extraction of photogenerated carriers, a fact that limits device performance. Here, CQD bulk heterojunction solids are demonstrated that, with extended carrier transport length, enable efficient IR light harvesting. An in‐solution doping strategy for large‐diameter CQDs is devised that addresses the complex interplay between (100) facets and doping agents, enabling to control CQD doping, energetic configuration, and size homogeneity. The hetero‐offset between n‐type CQDs and p‐type CQDs is manipulated to drive the transfer of electrons and holes into distinct carrier extraction pathways. This enables to form active layers exceeding thicknesses of 700 nm without compromising open‐circuit voltage and fill factor. As a result, >90% charge extraction efficiency across the ultraviolet to IR range (350–1400 nm) is documented.
format Online
Article
Text
id pubmed-7404161
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-74041612020-08-06 Colloidal Quantum Dot Bulk Heterojunction Solids with Near‐Unity Charge Extraction Efficiency Choi, Min‐Jae Baek, Se‐Woong Lee, Seungjin Biondi, Margherita Zheng, Chao Todorovic, Petar Li, Peicheng Hoogland, Sjoerd Lu, Zheng‐Hong de Arquer, F. Pelayo García Sargent, Edward H. Adv Sci (Weinh) Communications Colloidal quantum dots (CQDs) are of interest for optoelectronic applications owing to their tunable properties and ease of processing. Large‐diameter CQDs offer optical response in the infrared (IR), beyond the bandgap of c‐Si and perovskites. The absorption coefficient of IR CQDs (≈10(4) cm(−1)) entails the need for micrometer‐thick films to maximize the absorption of IR light. This exceeds the thickness compatible with the efficient extraction of photogenerated carriers, a fact that limits device performance. Here, CQD bulk heterojunction solids are demonstrated that, with extended carrier transport length, enable efficient IR light harvesting. An in‐solution doping strategy for large‐diameter CQDs is devised that addresses the complex interplay between (100) facets and doping agents, enabling to control CQD doping, energetic configuration, and size homogeneity. The hetero‐offset between n‐type CQDs and p‐type CQDs is manipulated to drive the transfer of electrons and holes into distinct carrier extraction pathways. This enables to form active layers exceeding thicknesses of 700 nm without compromising open‐circuit voltage and fill factor. As a result, >90% charge extraction efficiency across the ultraviolet to IR range (350–1400 nm) is documented. John Wiley and Sons Inc. 2020-06-17 /pmc/articles/PMC7404161/ /pubmed/32775165 http://dx.doi.org/10.1002/advs.202000894 Text en © 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Communications
Choi, Min‐Jae
Baek, Se‐Woong
Lee, Seungjin
Biondi, Margherita
Zheng, Chao
Todorovic, Petar
Li, Peicheng
Hoogland, Sjoerd
Lu, Zheng‐Hong
de Arquer, F. Pelayo García
Sargent, Edward H.
Colloidal Quantum Dot Bulk Heterojunction Solids with Near‐Unity Charge Extraction Efficiency
title Colloidal Quantum Dot Bulk Heterojunction Solids with Near‐Unity Charge Extraction Efficiency
title_full Colloidal Quantum Dot Bulk Heterojunction Solids with Near‐Unity Charge Extraction Efficiency
title_fullStr Colloidal Quantum Dot Bulk Heterojunction Solids with Near‐Unity Charge Extraction Efficiency
title_full_unstemmed Colloidal Quantum Dot Bulk Heterojunction Solids with Near‐Unity Charge Extraction Efficiency
title_short Colloidal Quantum Dot Bulk Heterojunction Solids with Near‐Unity Charge Extraction Efficiency
title_sort colloidal quantum dot bulk heterojunction solids with near‐unity charge extraction efficiency
topic Communications
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7404161/
https://www.ncbi.nlm.nih.gov/pubmed/32775165
http://dx.doi.org/10.1002/advs.202000894
work_keys_str_mv AT choiminjae colloidalquantumdotbulkheterojunctionsolidswithnearunitychargeextractionefficiency
AT baeksewoong colloidalquantumdotbulkheterojunctionsolidswithnearunitychargeextractionefficiency
AT leeseungjin colloidalquantumdotbulkheterojunctionsolidswithnearunitychargeextractionefficiency
AT biondimargherita colloidalquantumdotbulkheterojunctionsolidswithnearunitychargeextractionefficiency
AT zhengchao colloidalquantumdotbulkheterojunctionsolidswithnearunitychargeextractionefficiency
AT todorovicpetar colloidalquantumdotbulkheterojunctionsolidswithnearunitychargeextractionefficiency
AT lipeicheng colloidalquantumdotbulkheterojunctionsolidswithnearunitychargeextractionefficiency
AT hooglandsjoerd colloidalquantumdotbulkheterojunctionsolidswithnearunitychargeextractionefficiency
AT luzhenghong colloidalquantumdotbulkheterojunctionsolidswithnearunitychargeextractionefficiency
AT dearquerfpelayogarcia colloidalquantumdotbulkheterojunctionsolidswithnearunitychargeextractionefficiency
AT sargentedwardh colloidalquantumdotbulkheterojunctionsolidswithnearunitychargeextractionefficiency