Cargando…
Three new O-isocrotonyl-3-hydroxybutyric acid congeners produced by a sea anemone-derived marine bacterium of the genus Vibrio
Liquid cultures of Vibrio sp. SI9, isolated from the outer tissue of the sea anemone Radianthus crispus, was found to produce three new O-isocrotonyl-3-hydroxybutyric acid derivatives, O-isocrotonyl-3-hydroxypentanoic acid (1), O-isocrotonyl-3-hydroxyhexanoic acid (2), and O-(Z)-2-hexenoyl-3-hydroxy...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Beilstein-Institut
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7404252/ https://www.ncbi.nlm.nih.gov/pubmed/32802204 http://dx.doi.org/10.3762/bjoc.16.154 |
Sumario: | Liquid cultures of Vibrio sp. SI9, isolated from the outer tissue of the sea anemone Radianthus crispus, was found to produce three new O-isocrotonyl-3-hydroxybutyric acid derivatives, O-isocrotonyl-3-hydroxypentanoic acid (1), O-isocrotonyl-3-hydroxyhexanoic acid (2), and O-(Z)-2-hexenoyl-3-hydroxybutyric acid (3), together with the known O-isocrotonyl-3-hydroxybutyric acid (4). The structures of 1–3 were established by NMR spectroscopy and mass spectrometry, coupled with anisotropy-based chiral analysis, revealing the same R-configuration for all congeners 1–4. The compounds 1–4 were weakly growth-inhibitory against a marine fish ulcer pathogenic bacterium, Tenacibaculum maritimum NBRC16015. Structural similarities among 1–4, the O-isocrotonylated 3-hydroxybutyrate oligomers 5, and microbial biopolymer polyhydroxyalkanoates (PHA) suggest the presence of a common biosynthetic machinery, and hence a possible dehydrative modification at the hydroxy terminus of PHA. |
---|