Cargando…

Multifamily Determination of Phytohormones and Acidic Herbicides in Fruits and Vegetables by Liquid Chromatography–Tandem Mass Spectrometry under Accredited Conditions

A 7-min multifamily residue method for the simultaneous quantification and confirmation of 8 phytohormones and 27 acidic herbicides in fruit and vegetables using ultra high-performance liquid chromatography (UHPLC) coupled to tandem mass spectrometry (MS/MS) was developed, validated according to SAN...

Descripción completa

Detalles Bibliográficos
Autores principales: Grande Martínez, Ángel, Arrebola Liébanas, Francisco Javier, Santiago Valverde, Rosario, Hernández Torres, María Elena, Ramírez Casinello, Juan, Garrido Frenich, Antonia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7404484/
https://www.ncbi.nlm.nih.gov/pubmed/32660147
http://dx.doi.org/10.3390/foods9070906
Descripción
Sumario:A 7-min multifamily residue method for the simultaneous quantification and confirmation of 8 phytohormones and 27 acidic herbicides in fruit and vegetables using ultra high-performance liquid chromatography (UHPLC) coupled to tandem mass spectrometry (MS/MS) was developed, validated according to SANTE 12682/2019, and accredited according to UNE-EN-ISO/IEC 17025:2017. Due to the special characteristics of these kinds of compounds, a previous step of alkaline hydrolysis was carried out for breaking conjugates that were potentially formed due to the interactions of the analytes with other components present in the matrix. Sample treatment was based on QuEChERS extraction and optimum detection conditions were individually optimized for each analyte. Cucumber (for high water content commodities) and orange (for high acid and high water content samples) were selected as representative matrices. Matrix-matched calibration was used, and all the validation criteria established in the SANTE guidelines were satisfied. Uncertainty estimation for each target compound was included in the validation process. The proposed method was applied to the analysis of more than 450 samples of cucumber, orange, tomato, watermelon, and zucchini during one year. Several compounds, such as 2,4-dichlorophenoxyacetic acid (2,4-D), 4-(3-indolyl)butyric acid (IBA), dichlorprop (2,4-DP), 2-methyl-4-chlorophenoxy acetic acid (MCPA), and triclopyr were found, but always at concentrations lower than the maximum residue level (MRL) regulated by the EU.