Cargando…
Copepod Prey Selection and Grazing Efficiency Mediated by Chemical and Morphological Defensive Traits of Cyanobacteria
Phytoplankton anti-grazer traits control zooplankton grazing and are associated with harmful blooms. Yet, how morphological versus chemical phytoplankton defenses regulate zooplankton grazing is poorly understood. We compared zooplankton grazing and prey selection by contrasting morphological (filam...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7404970/ https://www.ncbi.nlm.nih.gov/pubmed/32708114 http://dx.doi.org/10.3390/toxins12070465 |
_version_ | 1783567200772161536 |
---|---|
author | Rangel, Luciana M. Silva, Lúcia H. S. Faassen, Elisabeth J. Lürling, Miquel Ger, Kemal Ali |
author_facet | Rangel, Luciana M. Silva, Lúcia H. S. Faassen, Elisabeth J. Lürling, Miquel Ger, Kemal Ali |
author_sort | Rangel, Luciana M. |
collection | PubMed |
description | Phytoplankton anti-grazer traits control zooplankton grazing and are associated with harmful blooms. Yet, how morphological versus chemical phytoplankton defenses regulate zooplankton grazing is poorly understood. We compared zooplankton grazing and prey selection by contrasting morphological (filament length: short vs. long) and chemical (saxitoxin: STX- vs. STX+) traits of a bloom-forming cyanobacterium (Raphidiopsis) offered at different concentrations in mixed diets with an edible phytoplankton to a copepod grazer. The copepod selectively grazed on the edible prey (avoidance of cyanobacteria) even when the cyanobacterium was dominant. Avoidance of the cyanobacterium was weakest for the “short STX-” filaments and strongest for the other three strains. Hence, filament size had an effect on cyanobacterial avoidance only in the STX- treatments, while toxin production significantly increased cyanobacterial avoidance regardless of filament size. Moreover, cyanobacterial dominance reduced grazing on the edible prey by almost 50%. Results emphasize that the dominance of filamentous cyanobacteria such as Raphidiopsis can interfere with copepod grazing in a trait specific manner. For cyanobacteria, toxin production may be more effective than filament size as an anti-grazer defense against selectively grazing zooplankton such as copepods. Our results highlight how multiple phytoplankton defensive traits interact to regulate the producer-consumer link in plankton ecosystems. |
format | Online Article Text |
id | pubmed-7404970 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-74049702020-08-17 Copepod Prey Selection and Grazing Efficiency Mediated by Chemical and Morphological Defensive Traits of Cyanobacteria Rangel, Luciana M. Silva, Lúcia H. S. Faassen, Elisabeth J. Lürling, Miquel Ger, Kemal Ali Toxins (Basel) Article Phytoplankton anti-grazer traits control zooplankton grazing and are associated with harmful blooms. Yet, how morphological versus chemical phytoplankton defenses regulate zooplankton grazing is poorly understood. We compared zooplankton grazing and prey selection by contrasting morphological (filament length: short vs. long) and chemical (saxitoxin: STX- vs. STX+) traits of a bloom-forming cyanobacterium (Raphidiopsis) offered at different concentrations in mixed diets with an edible phytoplankton to a copepod grazer. The copepod selectively grazed on the edible prey (avoidance of cyanobacteria) even when the cyanobacterium was dominant. Avoidance of the cyanobacterium was weakest for the “short STX-” filaments and strongest for the other three strains. Hence, filament size had an effect on cyanobacterial avoidance only in the STX- treatments, while toxin production significantly increased cyanobacterial avoidance regardless of filament size. Moreover, cyanobacterial dominance reduced grazing on the edible prey by almost 50%. Results emphasize that the dominance of filamentous cyanobacteria such as Raphidiopsis can interfere with copepod grazing in a trait specific manner. For cyanobacteria, toxin production may be more effective than filament size as an anti-grazer defense against selectively grazing zooplankton such as copepods. Our results highlight how multiple phytoplankton defensive traits interact to regulate the producer-consumer link in plankton ecosystems. MDPI 2020-07-21 /pmc/articles/PMC7404970/ /pubmed/32708114 http://dx.doi.org/10.3390/toxins12070465 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Rangel, Luciana M. Silva, Lúcia H. S. Faassen, Elisabeth J. Lürling, Miquel Ger, Kemal Ali Copepod Prey Selection and Grazing Efficiency Mediated by Chemical and Morphological Defensive Traits of Cyanobacteria |
title | Copepod Prey Selection and Grazing Efficiency Mediated by Chemical and Morphological Defensive Traits of Cyanobacteria |
title_full | Copepod Prey Selection and Grazing Efficiency Mediated by Chemical and Morphological Defensive Traits of Cyanobacteria |
title_fullStr | Copepod Prey Selection and Grazing Efficiency Mediated by Chemical and Morphological Defensive Traits of Cyanobacteria |
title_full_unstemmed | Copepod Prey Selection and Grazing Efficiency Mediated by Chemical and Morphological Defensive Traits of Cyanobacteria |
title_short | Copepod Prey Selection and Grazing Efficiency Mediated by Chemical and Morphological Defensive Traits of Cyanobacteria |
title_sort | copepod prey selection and grazing efficiency mediated by chemical and morphological defensive traits of cyanobacteria |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7404970/ https://www.ncbi.nlm.nih.gov/pubmed/32708114 http://dx.doi.org/10.3390/toxins12070465 |
work_keys_str_mv | AT rangellucianam copepodpreyselectionandgrazingefficiencymediatedbychemicalandmorphologicaldefensivetraitsofcyanobacteria AT silvaluciahs copepodpreyselectionandgrazingefficiencymediatedbychemicalandmorphologicaldefensivetraitsofcyanobacteria AT faassenelisabethj copepodpreyselectionandgrazingefficiencymediatedbychemicalandmorphologicaldefensivetraitsofcyanobacteria AT lurlingmiquel copepodpreyselectionandgrazingefficiencymediatedbychemicalandmorphologicaldefensivetraitsofcyanobacteria AT gerkemalali copepodpreyselectionandgrazingefficiencymediatedbychemicalandmorphologicaldefensivetraitsofcyanobacteria |