Cargando…

Evaluation of hemodynamics in healthy term neonates using ultrasonic cardiac output monitor

BACKGROUND: Transition from intrauterine to extrauterine life is a critical phase during which several changes occur in cardiovascular system. In clinical practice, it is important to have a method that allows an easy, rapid and precise evaluation of hemodynamic status of a newborn for clinical mana...

Descripción completa

Detalles Bibliográficos
Autores principales: Doni, Daniela, Nucera, Silvia, Rigotti, Camilla, Arosio, Elena, Cavalleri, Valeria, Ronconi, Monica, Ventura, Maria Luisa, Fedeli, Tiziana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7405450/
https://www.ncbi.nlm.nih.gov/pubmed/32758264
http://dx.doi.org/10.1186/s13052-020-00872-x
Descripción
Sumario:BACKGROUND: Transition from intrauterine to extrauterine life is a critical phase during which several changes occur in cardiovascular system. In clinical practice, it is important to have a method that allows an easy, rapid and precise evaluation of hemodynamic status of a newborn for clinical management. We here propose a rapid, broadly applicable method to monitor cardiovascular function using ultrasonic cardiac output monitoring (USCOM). METHODS: We here present data obtained from a cohort of healthy term newborns (n = 43) born by programmed cesarean section at Fondazione MBBM, Ospedale San Gerardo. Measurements were performed during the first hour of life, then at 6 + 2, at 12–24, and 48 h of life. We performed a screening echocardiography to identify a patent duct at 24 h and, if patent, it was repeated at 48 h of life. RESULTS: We show that physiologically, during the first 48 h of life, blood pressure and systemic vascular resistance gradually increase, while there is a concomitant reduction in stroke volume, cardiac output, and cardiac index. The presence of patent ductus arteriosus significantly reduces cardiac output (p = 0.006) and stroke volume (p = 0.023). Furthermore, newborns born at 37 weeks of gestational age display significantly lower cardiac output (p < 0.001), cardiac index (p = 0.045) and stroke volume (p < 0.001) compared to newborns born at 38 and ≥ 39 weeks. Finally, birth-weight (whether adequate, small or large for gestational age) significantly affects blood pressure (p = 0.0349), stroke volume (p < 0.0001), cardiac output (p < 0.0001) and cardiac index (p = 0.0004). In particular, LGA infants display a transient increase in cardiac index, cardiac output and stroke volume up to 24 h of life; showing a different behavior from AGA and SGA infants. CONCLUSIONS: Compared to previous studies, we expanded measurements to longer time-points and we analyzed the impact of commonly used clinical variables on hemodynamics during transition phase thus making our data clinically applicable in daily routine. We calculate reference values for each population, which can be of clinical relevance for quick bedside evaluation in neonatal intensive care unit.