Cargando…

Cueing the Necker cube: Pupil dilation reflects the viewing-from-above constraint in bistable perception

We hypothesized that a perceptually ambiguous or bistable object (Necker cube) can be more effectively biased to assume a point of view-from-above (VFA) than from below the object by cueing attention. Participants viewed a Necker cube in which one surface was temporarily shaded so as to prime a spec...

Descripción completa

Detalles Bibliográficos
Autores principales: Sato, Fumiaki, Laeng, Bruno, Nakauchi, Shigeki, Minami, Tetsuto
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Association for Research in Vision and Ophthalmology 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7405692/
https://www.ncbi.nlm.nih.gov/pubmed/32293651
http://dx.doi.org/10.1167/jov.20.4.7
Descripción
Sumario:We hypothesized that a perceptually ambiguous or bistable object (Necker cube) can be more effectively biased to assume a point of view-from-above (VFA) than from below the object by cueing attention. Participants viewed a Necker cube in which one surface was temporarily shaded so as to prime a specific perspective on the cube. Subsequently, the standard (wireframe) Necker cube was viewed for 3 seconds, and participants reported what perspective they had seen initially and whether their perception shifted to the alternative perspective during the brief viewing. Concomitantly, pupil size was monitored with an eye-tracker to obtain an index of cognitive effort. There were two conditions: passive viewing and forced attention to sustain the initially primed perspective. We confirmed the presence of a VFA bias with forced attention, which was accompanied by reduced attentional effort, as indexed by a reduced pupil diameter, compared with the view-from-below. Participants showed no bias during passive viewing. We suggest that the level of intensive attention, when retrieving and maintaining a specific view from memory, is mirrored in the size of the eye pupils and may reflect ecological constraints on visual perception.