Cargando…
Depth in convolutional neural networks solves scene segmentation
Feed-forward deep convolutional neural networks (DCNNs) are, under specific conditions, matching and even surpassing human performance in object recognition in natural scenes. This performance suggests that the analysis of a loose collection of image features could support the recognition of natural...
Autores principales: | Seijdel, Noor, Tsakmakidis, Nikos, de Haan, Edward H. F., Bohte, Sander M., Scholte, H. Steven |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7406083/ https://www.ncbi.nlm.nih.gov/pubmed/32706770 http://dx.doi.org/10.1371/journal.pcbi.1008022 |
Ejemplares similares
-
Low-level image statistics in natural scenes influence perceptual decision-making
por: Seijdel, Noor, et al.
Publicado: (2020) -
Scene complexity modulates degree of feedback activity during object detection in natural scenes
por: Groen, Iris I. A., et al.
Publicado: (2018) -
Sparse Computation in Adaptive Spiking Neural Networks
por: Zambrano, Davide, et al.
Publicado: (2019) -
Mechanisms of human dynamic object recognition revealed by sequential deep neural networks
por: Sörensen, Lynn K. A., et al.
Publicado: (2023) -
Editorial: Artificial Neural Networks as Models of Neural Information Processing
por: van Gerven, Marcel, et al.
Publicado: (2017)