Cargando…

Upregulation of erythropoietin and erythropoietin receptor in castration-resistant progression of prostate cancer

Hypoxia-induced erythropoietin signaling plays an important role in tumor growth and invasion. In the present study, we investigated the contribution of erythropoietin signaling pathway to castration-resistant prostate cancer and the development of a neuroendocrine phenotype. Immunohistochemical sta...

Descripción completa

Detalles Bibliográficos
Autores principales: Ye, Chen, Chen, Guang-Hua, Chen, Xin, Qin, Sheng-Fei, Shi, Min-Feng, Zhou, Tie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wolters Kluwer - Medknow 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7406089/
https://www.ncbi.nlm.nih.gov/pubmed/31417010
http://dx.doi.org/10.4103/aja.aja_80_19
Descripción
Sumario:Hypoxia-induced erythropoietin signaling plays an important role in tumor growth and invasion. In the present study, we investigated the contribution of erythropoietin signaling pathway to castration-resistant prostate cancer and the development of a neuroendocrine phenotype. Immunohistochemical staining showed that the erythropoietin and erythropoietin receptor scores in castration-resistant prostate cancer and androgen-dependent prostate cancer were 7.55 versus 4.5 and 7.45 versus 5.9, respectively (P < 0.001). Furthermore, a cell proliferation assay was conducted, and the differential expression of erythropoietin and erythropoietin receptor in LNCaP cells and hypoxia-induced LNCaP cells was evaluated using western blot and quantitative real-time PCR. The proliferation capacity of hypoxia-induced LNCaP cells was similar in cultures of both fetal bovine serum and charcoal-stripped fetal bovine serum, suggesting that LNCaP cells acquired hypoxia-induced androgen-independent growth. After 2 weeks of hypoxic culture, LNCaP cells showed a neuroendocrine cell change and increased expression of neuron-specific enolase, erythropoietin, and erythropoietin receptor; knockdown of erythropoietin receptor reversed the hypoxia-induced upregulation of neuron-specific enolase in the LNCaP cells. In conclusion, the concurrent upregulation of erythropoietin and erythropoietin receptor in castration-resistant prostate cancer suggests that the erythropoietin/erythropoietin receptor autocrine loop plays an important role in the progression of castration resistance and is responsible for the development of a neuroendocrine phenotype.