Cargando…
A practical application of generative adversarial networks for RNA-seq analysis to predict the molecular progress of Alzheimer's disease
Next-generation sequencing (NGS) technology has become a powerful tool for dissecting the molecular and pathological signatures of a variety of human diseases. However, the limited availability of biological samples from different disease stages is a major hurdle in studying disease progressions and...
Autores principales: | Park, Jinhee, Kim, Hyerin, Kim, Jaekwang, Cheon, Mookyung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7406107/ https://www.ncbi.nlm.nih.gov/pubmed/32706788 http://dx.doi.org/10.1371/journal.pcbi.1008099 |
Ejemplares similares
-
Investigation of early molecular alterations in tauopathy with generative adversarial networks
por: Kim, Hyerin, et al.
Publicado: (2023) -
Unveiling OASIS family as a key player in hypoxia–ischemia cases induced by cocaine using generative adversarial networks
por: Lee, Kyoungmin, et al.
Publicado: (2022) -
scIGANs: single-cell RNA-seq imputation using generative adversarial networks
por: Xu, Yungang, et al.
Publicado: (2020) -
Realistic in silico generation and augmentation of single-cell RNA-seq data using generative adversarial networks
por: Marouf, Mohamed, et al.
Publicado: (2020) -
Conditional Progressive Generative Adversarial Network for satellite image generation
por: Cardoso, Renato, et al.
Publicado: (2022)