Cargando…
T3SEpp: an Integrated Prediction Pipeline for Bacterial Type III Secreted Effectors
Many Gram-negative bacteria infect hosts and cause diseases by translocating a variety of type III secreted effectors (T3SEs) into the host cell cytoplasm. However, despite a dramatic increase in the number of available whole-genome sequences, it remains challenging for accurate prediction of T3SEs....
Autores principales: | Hui, Xinjie, Chen, Zewei, Lin, Mingxiong, Zhang, Junya, Hu, Yueming, Zeng, Yingying, Cheng, Xi, Ou-Yang, Le, Sun, Ming-an, White, Aaron P., Wang, Yejun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7406222/ https://www.ncbi.nlm.nih.gov/pubmed/32753503 http://dx.doi.org/10.1128/mSystems.00288-20 |
Ejemplares similares
-
Computational prediction of secreted proteins in gram-negative bacteria
por: Hui, Xinjie, et al.
Publicado: (2021) -
T1SEstacker: A Tri-Layer Stacking Model Effectively Predicts Bacterial Type 1 Secreted Proteins Based on C-Terminal Non-repeats-in-Toxin-Motif Sequence Features
por: Chen, Zewei, et al.
Publicado: (2022) -
T3_MM: A Markov Model Effectively Classifies Bacterial Type III Secretion Signals
por: Wang, Yejun, et al.
Publicado: (2013) -
Prediction of bacterial type IV secreted effectors by C-terminal features
por: Wang, Yejun, et al.
Publicado: (2014) -
The selenium content of SEPP1 versus selenium requirements in vertebrates
por: Penglase, Sam, et al.
Publicado: (2015)