Cargando…

Geospatial epidemiology of Staphylococcus aureus in a tropical setting: an enabling digital surveillance platform

Delivery of information to clinicians on evolving antimicrobial susceptibility needs to be accurate for the local needs, up-to-date and readily available at point of care. In northern Australia, bacterial infection rates are high but resistance to first- and second-line antibiotics is poorly describ...

Descripción completa

Detalles Bibliográficos
Autores principales: Wozniak, T. M., Cuningham, W., Buchanan, S., Coulter, S., Baird, R. W., Nimmo, G. R., Blyth, C. C., Tong, S. Y. C., Currie, B. J., Ralph, A. P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7406509/
https://www.ncbi.nlm.nih.gov/pubmed/32759953
http://dx.doi.org/10.1038/s41598-020-69312-4
_version_ 1783567438415134720
author Wozniak, T. M.
Cuningham, W.
Buchanan, S.
Coulter, S.
Baird, R. W.
Nimmo, G. R.
Blyth, C. C.
Tong, S. Y. C.
Currie, B. J.
Ralph, A. P.
author_facet Wozniak, T. M.
Cuningham, W.
Buchanan, S.
Coulter, S.
Baird, R. W.
Nimmo, G. R.
Blyth, C. C.
Tong, S. Y. C.
Currie, B. J.
Ralph, A. P.
author_sort Wozniak, T. M.
collection PubMed
description Delivery of information to clinicians on evolving antimicrobial susceptibility needs to be accurate for the local needs, up-to-date and readily available at point of care. In northern Australia, bacterial infection rates are high but resistance to first- and second-line antibiotics is poorly described and currently-available datasets exclude primary healthcare data. We aimed to develop an online geospatial and interactive platform for aggregating, analysing and disseminating data on regional bacterial pathogen susceptibility. We report the epidemiology of Staphylococcus aureus as an example of the power of digital platforms to tackle the growing spread of antimicrobial resistance in a high-burden, geographically-sparse region and beyond. We developed an online geospatial platform called HOTspots that visualises antimicrobial susceptibility patterns and temporal trends. Data on clinically-important bacteria and their antibiotic susceptibility profiles were sought from retrospectively identified clinical specimens submitted to three participating pathology providers (96 unique tertiary and primary healthcare centres, n = 1,006,238 tests) between January 2008 and December 2017. Here we present data on S. aureus only. Data were available on specimen type, date and location of collection. Regions from the Australian Bureau of Statistics were used to provide spatial localisation. The online platform provides an engaging visual representation of spatial heterogeneity, demonstrating striking geographical variation in S. aureus susceptibility across northern Australia. Methicillin resistance rates vary from 46% in the west to 26% in the east. Plots generated by the platform show temporal trends in proportions of S. aureus resistant to methicillin and other antimicrobials across the three jurisdictions of northern Australia. A quarter of all, and up to 35% of methicillin-resistant S. aureus (MRSA) blood isolates in parts of the northern Australia were resistant to inducible-clindamycin. Clindamycin resistance rates in MRSA are worryingly high in regions of northern Australia and are a local impediment to empirical use of this agent for community MRSA. Visualising routinely collected laboratory data with digital platforms, allows clinicians, public health physicians and guideline developers to monitor and respond to antimicrobial resistance in a timely manner. Deployment of this platform into clinical practice supports national and global efforts to innovate traditional disease surveillance systems with the use of digital technology and to provide practical solutions to reducing the threat of antimicrobial resistance.
format Online
Article
Text
id pubmed-7406509
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-74065092020-08-07 Geospatial epidemiology of Staphylococcus aureus in a tropical setting: an enabling digital surveillance platform Wozniak, T. M. Cuningham, W. Buchanan, S. Coulter, S. Baird, R. W. Nimmo, G. R. Blyth, C. C. Tong, S. Y. C. Currie, B. J. Ralph, A. P. Sci Rep Article Delivery of information to clinicians on evolving antimicrobial susceptibility needs to be accurate for the local needs, up-to-date and readily available at point of care. In northern Australia, bacterial infection rates are high but resistance to first- and second-line antibiotics is poorly described and currently-available datasets exclude primary healthcare data. We aimed to develop an online geospatial and interactive platform for aggregating, analysing and disseminating data on regional bacterial pathogen susceptibility. We report the epidemiology of Staphylococcus aureus as an example of the power of digital platforms to tackle the growing spread of antimicrobial resistance in a high-burden, geographically-sparse region and beyond. We developed an online geospatial platform called HOTspots that visualises antimicrobial susceptibility patterns and temporal trends. Data on clinically-important bacteria and their antibiotic susceptibility profiles were sought from retrospectively identified clinical specimens submitted to three participating pathology providers (96 unique tertiary and primary healthcare centres, n = 1,006,238 tests) between January 2008 and December 2017. Here we present data on S. aureus only. Data were available on specimen type, date and location of collection. Regions from the Australian Bureau of Statistics were used to provide spatial localisation. The online platform provides an engaging visual representation of spatial heterogeneity, demonstrating striking geographical variation in S. aureus susceptibility across northern Australia. Methicillin resistance rates vary from 46% in the west to 26% in the east. Plots generated by the platform show temporal trends in proportions of S. aureus resistant to methicillin and other antimicrobials across the three jurisdictions of northern Australia. A quarter of all, and up to 35% of methicillin-resistant S. aureus (MRSA) blood isolates in parts of the northern Australia were resistant to inducible-clindamycin. Clindamycin resistance rates in MRSA are worryingly high in regions of northern Australia and are a local impediment to empirical use of this agent for community MRSA. Visualising routinely collected laboratory data with digital platforms, allows clinicians, public health physicians and guideline developers to monitor and respond to antimicrobial resistance in a timely manner. Deployment of this platform into clinical practice supports national and global efforts to innovate traditional disease surveillance systems with the use of digital technology and to provide practical solutions to reducing the threat of antimicrobial resistance. Nature Publishing Group UK 2020-08-05 /pmc/articles/PMC7406509/ /pubmed/32759953 http://dx.doi.org/10.1038/s41598-020-69312-4 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Wozniak, T. M.
Cuningham, W.
Buchanan, S.
Coulter, S.
Baird, R. W.
Nimmo, G. R.
Blyth, C. C.
Tong, S. Y. C.
Currie, B. J.
Ralph, A. P.
Geospatial epidemiology of Staphylococcus aureus in a tropical setting: an enabling digital surveillance platform
title Geospatial epidemiology of Staphylococcus aureus in a tropical setting: an enabling digital surveillance platform
title_full Geospatial epidemiology of Staphylococcus aureus in a tropical setting: an enabling digital surveillance platform
title_fullStr Geospatial epidemiology of Staphylococcus aureus in a tropical setting: an enabling digital surveillance platform
title_full_unstemmed Geospatial epidemiology of Staphylococcus aureus in a tropical setting: an enabling digital surveillance platform
title_short Geospatial epidemiology of Staphylococcus aureus in a tropical setting: an enabling digital surveillance platform
title_sort geospatial epidemiology of staphylococcus aureus in a tropical setting: an enabling digital surveillance platform
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7406509/
https://www.ncbi.nlm.nih.gov/pubmed/32759953
http://dx.doi.org/10.1038/s41598-020-69312-4
work_keys_str_mv AT wozniaktm geospatialepidemiologyofstaphylococcusaureusinatropicalsettinganenablingdigitalsurveillanceplatform
AT cuninghamw geospatialepidemiologyofstaphylococcusaureusinatropicalsettinganenablingdigitalsurveillanceplatform
AT buchanans geospatialepidemiologyofstaphylococcusaureusinatropicalsettinganenablingdigitalsurveillanceplatform
AT coulters geospatialepidemiologyofstaphylococcusaureusinatropicalsettinganenablingdigitalsurveillanceplatform
AT bairdrw geospatialepidemiologyofstaphylococcusaureusinatropicalsettinganenablingdigitalsurveillanceplatform
AT nimmogr geospatialepidemiologyofstaphylococcusaureusinatropicalsettinganenablingdigitalsurveillanceplatform
AT blythcc geospatialepidemiologyofstaphylococcusaureusinatropicalsettinganenablingdigitalsurveillanceplatform
AT tongsyc geospatialepidemiologyofstaphylococcusaureusinatropicalsettinganenablingdigitalsurveillanceplatform
AT curriebj geospatialepidemiologyofstaphylococcusaureusinatropicalsettinganenablingdigitalsurveillanceplatform
AT ralphap geospatialepidemiologyofstaphylococcusaureusinatropicalsettinganenablingdigitalsurveillanceplatform