Cargando…
Geochemistry and Microbiology Predict Environmental Niches With Conditions Favoring Potential Microbial Activity in the Bakken Shale
The Bakken Shale and underlying Three Forks Formation is an important oil and gas reservoir in the United States. The hydrocarbon resources in this region are accessible using unconventional oil and gas extraction methods, including horizontal drilling and hydraulic fracturing. However, the geochemi...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7406717/ https://www.ncbi.nlm.nih.gov/pubmed/32849400 http://dx.doi.org/10.3389/fmicb.2020.01781 |
_version_ | 1783567481451839488 |
---|---|
author | Tinker, Kara Gardiner, James Lipus, Daniel Sarkar, Preom Stuckman, Mengling Gulliver, Djuna |
author_facet | Tinker, Kara Gardiner, James Lipus, Daniel Sarkar, Preom Stuckman, Mengling Gulliver, Djuna |
author_sort | Tinker, Kara |
collection | PubMed |
description | The Bakken Shale and underlying Three Forks Formation is an important oil and gas reservoir in the United States. The hydrocarbon resources in this region are accessible using unconventional oil and gas extraction methods, including horizontal drilling and hydraulic fracturing. However, the geochemistry and microbiology of this region are not well understood, although they are known to have major implications for productivity and water management. In this study, we analyzed the produced water from 14 unconventional wells in the Bakken Shale using geochemical measurements, quantitative PCR (qPCR), and 16S rRNA gene sequencing with the overall goal of understanding the complex dynamics present in hydraulically fractured wells. Bakken Shale produced waters from this study exhibit high measurements of total dissolved solids (TDS). These conditions inhibit microbial growth, such that all samples had low microbial loads except for one sample (well 11), which had lower TDS concentrations and higher 16S rRNA gene copies. Our produced water samples had elevated chloride concentrations typical of other Bakken waters. However, they also contained a sulfate concentration trend that suggested higher occurrence of sulfate reduction, especially in wells 11 and 18. The unique geochemistry and microbial loads recorded for wells 11 and 18 suggest that the heterogeneous nature of the producing formation can provide environmental niches with conditions conducive for microbial growth. This was supported by strong correlations between the produced water microbial community and the associated geochemical parameters including sodium, chloride, and sulfate concentrations. The produced water microbial community was dominated by 19 bacterial families, all of which have previously been associated with hydrocarbon-reservoirs. These families include Halanaerobiaceae, Pseudomonadaceae, and Desulfohalobiaceae which are often associated with thiosulfate reduction, biofilm production, and sulfate reduction, respectively. Notably, well 11 was dominated by sulfate reducers. Our findings expand the current understanding of microbial life in the Bakken region and provide new insights into how the unique produced water conditions shape microbial communities. Finally, our analysis suggests that produced water chemistry is tightly linked with microbiota in the Bakken Shale and shows that additional research efforts that incorporate coupled microbial and geochemical datasets are necessary to understand this ecosystem. |
format | Online Article Text |
id | pubmed-7406717 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-74067172020-08-25 Geochemistry and Microbiology Predict Environmental Niches With Conditions Favoring Potential Microbial Activity in the Bakken Shale Tinker, Kara Gardiner, James Lipus, Daniel Sarkar, Preom Stuckman, Mengling Gulliver, Djuna Front Microbiol Microbiology The Bakken Shale and underlying Three Forks Formation is an important oil and gas reservoir in the United States. The hydrocarbon resources in this region are accessible using unconventional oil and gas extraction methods, including horizontal drilling and hydraulic fracturing. However, the geochemistry and microbiology of this region are not well understood, although they are known to have major implications for productivity and water management. In this study, we analyzed the produced water from 14 unconventional wells in the Bakken Shale using geochemical measurements, quantitative PCR (qPCR), and 16S rRNA gene sequencing with the overall goal of understanding the complex dynamics present in hydraulically fractured wells. Bakken Shale produced waters from this study exhibit high measurements of total dissolved solids (TDS). These conditions inhibit microbial growth, such that all samples had low microbial loads except for one sample (well 11), which had lower TDS concentrations and higher 16S rRNA gene copies. Our produced water samples had elevated chloride concentrations typical of other Bakken waters. However, they also contained a sulfate concentration trend that suggested higher occurrence of sulfate reduction, especially in wells 11 and 18. The unique geochemistry and microbial loads recorded for wells 11 and 18 suggest that the heterogeneous nature of the producing formation can provide environmental niches with conditions conducive for microbial growth. This was supported by strong correlations between the produced water microbial community and the associated geochemical parameters including sodium, chloride, and sulfate concentrations. The produced water microbial community was dominated by 19 bacterial families, all of which have previously been associated with hydrocarbon-reservoirs. These families include Halanaerobiaceae, Pseudomonadaceae, and Desulfohalobiaceae which are often associated with thiosulfate reduction, biofilm production, and sulfate reduction, respectively. Notably, well 11 was dominated by sulfate reducers. Our findings expand the current understanding of microbial life in the Bakken region and provide new insights into how the unique produced water conditions shape microbial communities. Finally, our analysis suggests that produced water chemistry is tightly linked with microbiota in the Bakken Shale and shows that additional research efforts that incorporate coupled microbial and geochemical datasets are necessary to understand this ecosystem. Frontiers Media S.A. 2020-07-30 /pmc/articles/PMC7406717/ /pubmed/32849400 http://dx.doi.org/10.3389/fmicb.2020.01781 Text en Copyright © 2020 Tinker, Gardiner, Lipus, Sarkar, Stuckman and Gulliver. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Tinker, Kara Gardiner, James Lipus, Daniel Sarkar, Preom Stuckman, Mengling Gulliver, Djuna Geochemistry and Microbiology Predict Environmental Niches With Conditions Favoring Potential Microbial Activity in the Bakken Shale |
title | Geochemistry and Microbiology Predict Environmental Niches With Conditions Favoring Potential Microbial Activity in the Bakken Shale |
title_full | Geochemistry and Microbiology Predict Environmental Niches With Conditions Favoring Potential Microbial Activity in the Bakken Shale |
title_fullStr | Geochemistry and Microbiology Predict Environmental Niches With Conditions Favoring Potential Microbial Activity in the Bakken Shale |
title_full_unstemmed | Geochemistry and Microbiology Predict Environmental Niches With Conditions Favoring Potential Microbial Activity in the Bakken Shale |
title_short | Geochemistry and Microbiology Predict Environmental Niches With Conditions Favoring Potential Microbial Activity in the Bakken Shale |
title_sort | geochemistry and microbiology predict environmental niches with conditions favoring potential microbial activity in the bakken shale |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7406717/ https://www.ncbi.nlm.nih.gov/pubmed/32849400 http://dx.doi.org/10.3389/fmicb.2020.01781 |
work_keys_str_mv | AT tinkerkara geochemistryandmicrobiologypredictenvironmentalnicheswithconditionsfavoringpotentialmicrobialactivityinthebakkenshale AT gardinerjames geochemistryandmicrobiologypredictenvironmentalnicheswithconditionsfavoringpotentialmicrobialactivityinthebakkenshale AT lipusdaniel geochemistryandmicrobiologypredictenvironmentalnicheswithconditionsfavoringpotentialmicrobialactivityinthebakkenshale AT sarkarpreom geochemistryandmicrobiologypredictenvironmentalnicheswithconditionsfavoringpotentialmicrobialactivityinthebakkenshale AT stuckmanmengling geochemistryandmicrobiologypredictenvironmentalnicheswithconditionsfavoringpotentialmicrobialactivityinthebakkenshale AT gulliverdjuna geochemistryandmicrobiologypredictenvironmentalnicheswithconditionsfavoringpotentialmicrobialactivityinthebakkenshale |