Cargando…

Interleukin-6 promotes proliferative vitreoretinopathy by inducing epithelial-mesenchymal transition via the JAK1/STAT3 signaling pathway

PURPOSE: Interleukin-6 (IL-6) is elevated in intraocular fluid from eyes with proliferative vitreoretinopathy (PVR), but the exact role of the cytokine is still unclear. We investigated the function and mechanism of IL-6 in retinal pigment epithelium (RPE) cell biology in vitro and in a mouse model...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Xiaoyun, Yang, Weimin, Deng, Xiaoqian, Ye, Shaobi, Xiao, Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Vision 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7406861/
https://www.ncbi.nlm.nih.gov/pubmed/32818015
Descripción
Sumario:PURPOSE: Interleukin-6 (IL-6) is elevated in intraocular fluid from eyes with proliferative vitreoretinopathy (PVR), but the exact role of the cytokine is still unclear. We investigated the function and mechanism of IL-6 in retinal pigment epithelium (RPE) cell biology in vitro and in a mouse model in vivo. METHODS: After treatment with various concentrations of IL-6, RPE cell proliferation was assessed with cell counting kit-8 (CCK-8) assay, and epithelial-mesenchymal transition (EMT) markers were evaluated using western blotting and immunofluorescent staining. The activation of JAK1/STAT3 signaling was determined with western blotting. Moreover, the effects of blockade of IL-6/JAK1/STAT3 signaling were investigated using pharmacological inhibitor S3I-201. For in vivo studies, the PVR model was induced with intravitreal injection of dispase/collagenase in wild-type and IL-6 knockout mice. The severity of PVR was evaluated with histological analysis. The expression of IL-6, gp130, and EMT markers was assessed with quantitative real-time PCR and western blotting. RESULTS: IL-6 statistically significantly induced RPE cell proliferation and EMT in a dose-dependent manner in vitro, which was accompanied by rapid phosphorylation of JAK1 and STAT3. Blockade of the IL-6/JAK1/STAT3 pathway with S3I-201 apparently inhibited RPE proliferation and EMT. Furthermore, IL-6 and gp130 overexpression, and JAK1/STAT3 signaling hyperactivation were detected in the retinas of the wild-type mice at 1, 3, and 7 days after dispase/collagenase injection. Finally, we confirmed that IL-6 deficiency markedly alleviated mouse PVR development via inhibiting EMT. CONCLUSIONS: These findings indicate that IL-6 promotes PVR by inducing RPE proliferation and EMT via the JAK1/STAT3 signaling pathway. We provided new evidence that therapeutic strategies to block IL-6 may be beneficial for PVR.