Cargando…
Internal Volumes of Pharmaceutical Compendial Induction Port, Next-Generation Impactor With and Without Its Pre-separator, and Several Configurations of the Andersen Cascade Impactor With and Without Pre-separator
Background: Determination of aerosol aerodynamic particle size distributions (APSD) from dry-powder inhalers (DPIs), following quality control procedures in the pharmacopeial compendia, requires that the flow through the measurement apparatus, comprising induction port, optional pre-separator, and c...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Mary Ann Liebert, Inc., publishers
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7407003/ https://www.ncbi.nlm.nih.gov/pubmed/32101074 http://dx.doi.org/10.1089/jamp.2019.1590 |
_version_ | 1783567530321772544 |
---|---|
author | Roberts, Daryl L. Chambers, Frank Copley, Mark Mitchell, Jolyon P. |
author_facet | Roberts, Daryl L. Chambers, Frank Copley, Mark Mitchell, Jolyon P. |
author_sort | Roberts, Daryl L. |
collection | PubMed |
description | Background: Determination of aerosol aerodynamic particle size distributions (APSD) from dry-powder inhalers (DPIs), following quality control procedures in the pharmacopeial compendia, requires that the flow through the measurement apparatus, comprising induction port, optional pre-separator, and cascade impactor, starts from zero on actuation of the inhaler, using a solenoid valve to apply vacuum to the apparatus exit. The target flow rate, governed by the inhaler resistance, is reached some time afterward. Understanding the behavior of the DPI design-specific flow rate-rise time curve can provide information about the kinetics of the initial powder dispersion in the inhaler and subsequent transport through the APSD measurement equipment. Accurate and precise measures of the internal volume of each component of this apparatus are required to enable reliable relationships to be established between this parameter and those defining the flow rate-rise time curve. Methods: An improved method is described that involves progressive withdrawal of an accurately known volume of air from the interior passageways of the apparatus-on-test that are closed to the outside atmosphere. This approach is applicable for determining internal volumes of components having complex internal geometries. Filling some components with water, along with volumetric or gravimetric measurement, has proven valuable for the induction port and for checking other measurements. Results: Values of internal volume are provided for the USP (United States Pharmacopeia)/PhEur (European Pharmacopoeia) induction port, the Next-Generation Impactor (NGI™) with and without its pre-separator, and various Andersen 8-stage cascade impactor configurations with and without their pre-separators. Conclusion: These data are more accurate and precise, and therefore update those reported by Copley et al. |
format | Online Article Text |
id | pubmed-7407003 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Mary Ann Liebert, Inc., publishers |
record_format | MEDLINE/PubMed |
spelling | pubmed-74070032020-08-06 Internal Volumes of Pharmaceutical Compendial Induction Port, Next-Generation Impactor With and Without Its Pre-separator, and Several Configurations of the Andersen Cascade Impactor With and Without Pre-separator Roberts, Daryl L. Chambers, Frank Copley, Mark Mitchell, Jolyon P. J Aerosol Med Pulm Drug Deliv Original Research Background: Determination of aerosol aerodynamic particle size distributions (APSD) from dry-powder inhalers (DPIs), following quality control procedures in the pharmacopeial compendia, requires that the flow through the measurement apparatus, comprising induction port, optional pre-separator, and cascade impactor, starts from zero on actuation of the inhaler, using a solenoid valve to apply vacuum to the apparatus exit. The target flow rate, governed by the inhaler resistance, is reached some time afterward. Understanding the behavior of the DPI design-specific flow rate-rise time curve can provide information about the kinetics of the initial powder dispersion in the inhaler and subsequent transport through the APSD measurement equipment. Accurate and precise measures of the internal volume of each component of this apparatus are required to enable reliable relationships to be established between this parameter and those defining the flow rate-rise time curve. Methods: An improved method is described that involves progressive withdrawal of an accurately known volume of air from the interior passageways of the apparatus-on-test that are closed to the outside atmosphere. This approach is applicable for determining internal volumes of components having complex internal geometries. Filling some components with water, along with volumetric or gravimetric measurement, has proven valuable for the induction port and for checking other measurements. Results: Values of internal volume are provided for the USP (United States Pharmacopeia)/PhEur (European Pharmacopoeia) induction port, the Next-Generation Impactor (NGI™) with and without its pre-separator, and various Andersen 8-stage cascade impactor configurations with and without their pre-separators. Conclusion: These data are more accurate and precise, and therefore update those reported by Copley et al. Mary Ann Liebert, Inc., publishers 2020-08-01 2020-07-28 /pmc/articles/PMC7407003/ /pubmed/32101074 http://dx.doi.org/10.1089/jamp.2019.1590 Text en © Daryl L. Roberts, et al., 2020. Published by Mary Ann Liebert, Inc. This Open Access article is distributed under the terms of the Creative Commons License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. |
spellingShingle | Original Research Roberts, Daryl L. Chambers, Frank Copley, Mark Mitchell, Jolyon P. Internal Volumes of Pharmaceutical Compendial Induction Port, Next-Generation Impactor With and Without Its Pre-separator, and Several Configurations of the Andersen Cascade Impactor With and Without Pre-separator |
title | Internal Volumes of Pharmaceutical Compendial Induction Port, Next-Generation Impactor With and Without Its Pre-separator, and Several Configurations of the Andersen Cascade Impactor With and Without Pre-separator |
title_full | Internal Volumes of Pharmaceutical Compendial Induction Port, Next-Generation Impactor With and Without Its Pre-separator, and Several Configurations of the Andersen Cascade Impactor With and Without Pre-separator |
title_fullStr | Internal Volumes of Pharmaceutical Compendial Induction Port, Next-Generation Impactor With and Without Its Pre-separator, and Several Configurations of the Andersen Cascade Impactor With and Without Pre-separator |
title_full_unstemmed | Internal Volumes of Pharmaceutical Compendial Induction Port, Next-Generation Impactor With and Without Its Pre-separator, and Several Configurations of the Andersen Cascade Impactor With and Without Pre-separator |
title_short | Internal Volumes of Pharmaceutical Compendial Induction Port, Next-Generation Impactor With and Without Its Pre-separator, and Several Configurations of the Andersen Cascade Impactor With and Without Pre-separator |
title_sort | internal volumes of pharmaceutical compendial induction port, next-generation impactor with and without its pre-separator, and several configurations of the andersen cascade impactor with and without pre-separator |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7407003/ https://www.ncbi.nlm.nih.gov/pubmed/32101074 http://dx.doi.org/10.1089/jamp.2019.1590 |
work_keys_str_mv | AT robertsdaryll internalvolumesofpharmaceuticalcompendialinductionportnextgenerationimpactorwithandwithoutitspreseparatorandseveralconfigurationsoftheandersencascadeimpactorwithandwithoutpreseparator AT chambersfrank internalvolumesofpharmaceuticalcompendialinductionportnextgenerationimpactorwithandwithoutitspreseparatorandseveralconfigurationsoftheandersencascadeimpactorwithandwithoutpreseparator AT copleymark internalvolumesofpharmaceuticalcompendialinductionportnextgenerationimpactorwithandwithoutitspreseparatorandseveralconfigurationsoftheandersencascadeimpactorwithandwithoutpreseparator AT mitchelljolyonp internalvolumesofpharmaceuticalcompendialinductionportnextgenerationimpactorwithandwithoutitspreseparatorandseveralconfigurationsoftheandersencascadeimpactorwithandwithoutpreseparator |