Cargando…

In Vivo Analysis of Trypanosoma cruzi Persistence Foci at Single-Cell Resolution

Infections with Trypanosoma cruzi are usually lifelong despite generating a strong adaptive immune response. Identifying the sites of parasite persistence is therefore crucial to understanding how T. cruzi avoids immune-mediated destruction. However, this is a major technical challenge, because the...

Descripción completa

Detalles Bibliográficos
Autores principales: Ward, Alexander I., Lewis, Michael D., Khan, Archie A., McCann, Conor J., Francisco, Amanda F., Jayawardhana, Shiromani, Taylor, Martin C., Kelly, John M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7407085/
https://www.ncbi.nlm.nih.gov/pubmed/32753495
http://dx.doi.org/10.1128/mBio.01242-20
Descripción
Sumario:Infections with Trypanosoma cruzi are usually lifelong despite generating a strong adaptive immune response. Identifying the sites of parasite persistence is therefore crucial to understanding how T. cruzi avoids immune-mediated destruction. However, this is a major technical challenge, because the parasite burden during chronic infections is extremely low. Here, we describe an integrated approach involving comprehensive tissue processing, ex vivo imaging, and confocal microscopy, which allowed us to visualize infected host cells in murine tissue with exquisite sensitivity. Using bioluminescence-guided tissue sampling, with a detection level of <20 parasites, we showed that in the colon, smooth muscle myocytes in the circular muscle layer are the most common infected host cell type. Typically, during chronic infections, the entire colon of a mouse contains only a few hundred parasites, often concentrated in a small number of cells each containing >200 parasites, which we term mega-nests. In contrast, during the acute stage, when the total parasite burden is considerably higher and many cells are infected, nests containing >50 parasites are rarely found. In C3H/HeN mice, but not BALB/c mice, we identified skeletal muscle as a major site of persistence during the chronic stage, with most parasites being found in large mega-nests within the muscle fibers. Finally, we report that parasites are also frequently found in the skin during chronic murine infections, often in multiple infection foci. In addition to being a site of parasite persistence, this anatomical reservoir could play an important role in insect-mediated transmission and have implications for drug development.