Cargando…
Closable Valves and Channels for Polymeric Microfluidic Devices
This study explores three unique approaches for closing valves and channels within microfluidic systems, specifically multilayer, centrifugally driven polymeric devices. Precise control over the cessation of liquid movement is achieved through either the introduction of expanding polyurethane foam,...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7407107/ https://www.ncbi.nlm.nih.gov/pubmed/32605093 http://dx.doi.org/10.3390/mi11070627 |
_version_ | 1783567549281075200 |
---|---|
author | Clark, Charles P. Woolf, M. Shane Karstens, Sarah L. Lewis, Hannah M. Nauman, Aeren Q. Landers, James P. |
author_facet | Clark, Charles P. Woolf, M. Shane Karstens, Sarah L. Lewis, Hannah M. Nauman, Aeren Q. Landers, James P. |
author_sort | Clark, Charles P. |
collection | PubMed |
description | This study explores three unique approaches for closing valves and channels within microfluidic systems, specifically multilayer, centrifugally driven polymeric devices. Precise control over the cessation of liquid movement is achieved through either the introduction of expanding polyurethane foam, the application of direct contact heating, or the redeposition of xerographic toner via chloroform solvation and evaporation. Each of these techniques modifies the substrate of the microdevice in a different way. All three are effective at closing a previously open fluidic pathway after a desired unit operation has taken place, i.e., sample metering, chemical reaction, or analytical measurement. Closing previously open valves and channels imparts stringent fluidic control—preventing backflow, maintaining pressurized chambers within the microdevice, and facilitating sample fractionation without cross-contamination. As such, a variety of microfluidic bioanalytical systems would benefit from the integration of these valving approaches. |
format | Online Article Text |
id | pubmed-7407107 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-74071072020-08-11 Closable Valves and Channels for Polymeric Microfluidic Devices Clark, Charles P. Woolf, M. Shane Karstens, Sarah L. Lewis, Hannah M. Nauman, Aeren Q. Landers, James P. Micromachines (Basel) Article This study explores three unique approaches for closing valves and channels within microfluidic systems, specifically multilayer, centrifugally driven polymeric devices. Precise control over the cessation of liquid movement is achieved through either the introduction of expanding polyurethane foam, the application of direct contact heating, or the redeposition of xerographic toner via chloroform solvation and evaporation. Each of these techniques modifies the substrate of the microdevice in a different way. All three are effective at closing a previously open fluidic pathway after a desired unit operation has taken place, i.e., sample metering, chemical reaction, or analytical measurement. Closing previously open valves and channels imparts stringent fluidic control—preventing backflow, maintaining pressurized chambers within the microdevice, and facilitating sample fractionation without cross-contamination. As such, a variety of microfluidic bioanalytical systems would benefit from the integration of these valving approaches. MDPI 2020-06-27 /pmc/articles/PMC7407107/ /pubmed/32605093 http://dx.doi.org/10.3390/mi11070627 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Clark, Charles P. Woolf, M. Shane Karstens, Sarah L. Lewis, Hannah M. Nauman, Aeren Q. Landers, James P. Closable Valves and Channels for Polymeric Microfluidic Devices |
title | Closable Valves and Channels for Polymeric Microfluidic Devices |
title_full | Closable Valves and Channels for Polymeric Microfluidic Devices |
title_fullStr | Closable Valves and Channels for Polymeric Microfluidic Devices |
title_full_unstemmed | Closable Valves and Channels for Polymeric Microfluidic Devices |
title_short | Closable Valves and Channels for Polymeric Microfluidic Devices |
title_sort | closable valves and channels for polymeric microfluidic devices |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7407107/ https://www.ncbi.nlm.nih.gov/pubmed/32605093 http://dx.doi.org/10.3390/mi11070627 |
work_keys_str_mv | AT clarkcharlesp closablevalvesandchannelsforpolymericmicrofluidicdevices AT woolfmshane closablevalvesandchannelsforpolymericmicrofluidicdevices AT karstenssarahl closablevalvesandchannelsforpolymericmicrofluidicdevices AT lewishannahm closablevalvesandchannelsforpolymericmicrofluidicdevices AT naumanaerenq closablevalvesandchannelsforpolymericmicrofluidicdevices AT landersjamesp closablevalvesandchannelsforpolymericmicrofluidicdevices |